Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that functions in normal breast may also contribute to breast cancer metastasis

16.02.2012
Paradox explored in a study reported in the American Journal of Pathology

The trefoil factor 3 (TFF3) protein protects and maintains the integrity of the epithelial surface in the normal breast. New research has found that while TFF3 protein expression is higher in well-differentiated low grade tumors and therefore associated with features of a good prognosis, it has a more sinister role in breast cancer invasion and metastasis. The report is published in the March issue of the American Journal of Pathology.

"Our findings suggest that TFF3 is regulated by estrogen and has beneficial properties in breast epithelia," says lead investigator Felicity E.B. May, PhD, of the Northern Institute for Cancer Research and the Department of Pathology at Newcastle University, UK. "We propose that early during breast tumorigenesis, TFF3 retains its association with normal functionality of breast epithelial cells. Subsequently, with the loss of tumor cell differentiation, its function is subverted to promote the development of tumors and infiltration and lymph node metastasis."

To determine the role of TFF3 in breast cancer, researchers measured its level in tissue samples from normal breasts, benign breast lesions, in situ carcinomas, invasive carcinomas, and involved lymph nodes. TFF3 was expressed in the majority of benign and malignant breast lesions studied. Well-differentiated tumor types expressed higher levels of TFF3. There was a positive association between TFF3 protein expression and microvessel density, suggesting that it stimulates angiogenesis in breast tumors.

A striking finding of the study is the strength and consistency of the association between TFF3 expression and a more metastatic phenotype in invasive breast cancer. TFF3 was expressed at higher levels in primary tumors with associated metastasis, and its expression was higher in malignant cells that have metastasized away from those within the primary tumor. There appears to be a switch in the normal polarized secretion of TFF3 in invasive cancer, which allows it to exert invasion-promoting effects.

The study suggests that TFF3 may be one of the genes that mediate the various effects of estrogens in breast cancer. "The paradox remains, however, for both the estrogen receptor and TFF3, that they contribute to the normal physiology of the breast epithelium yet are involved in the progression of cancer," notes Dr. May.

Importantly, the investigators also evaluated the potential of TFF3 as a biomarker of lymphovascular invasion and lymph node metastasis. They found that TFF3 had greater predictive power than other markers analyzed, including tumor grade, age, tumor size and type, and estrogen and progesterone receptor status. "Our study reinforces the view that TFF3 expression merits evaluation as a prognostic biomarker and as a predictive marker of response to therapy," concludes Dr. May. "It is probable that its malign effects will be mitigated by adjuvant endocrine therapy in women with hormone-responsive cancers. However, the usefulness of TFF3 as a marker of hormone responsiveness needs to be evaluated."

The article is "TFF3 Is a Normal Breast Epithelial Protein and Is Associated with Differentiated Phenotype in Early Breast Cancer but Predisposes to Invasion and Metastasis in Advanced Disease," by A.R.H. Ahmed, A.B. Griffiths, M.T. Tilby, B.R. Westley, and F.E.B. May (doi: 10.1016/j.ajpath.2011.11.022). It will appear in The American Journal of Pathology, Volume 180, Issue 3 (March 2012) published by Elsevier.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: Cancer Pathology Protein TFF3 breast breast cancer lymph node primary tumor protein expression

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>