Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that functions in normal breast may also contribute to breast cancer metastasis

16.02.2012
Paradox explored in a study reported in the American Journal of Pathology

The trefoil factor 3 (TFF3) protein protects and maintains the integrity of the epithelial surface in the normal breast. New research has found that while TFF3 protein expression is higher in well-differentiated low grade tumors and therefore associated with features of a good prognosis, it has a more sinister role in breast cancer invasion and metastasis. The report is published in the March issue of the American Journal of Pathology.

"Our findings suggest that TFF3 is regulated by estrogen and has beneficial properties in breast epithelia," says lead investigator Felicity E.B. May, PhD, of the Northern Institute for Cancer Research and the Department of Pathology at Newcastle University, UK. "We propose that early during breast tumorigenesis, TFF3 retains its association with normal functionality of breast epithelial cells. Subsequently, with the loss of tumor cell differentiation, its function is subverted to promote the development of tumors and infiltration and lymph node metastasis."

To determine the role of TFF3 in breast cancer, researchers measured its level in tissue samples from normal breasts, benign breast lesions, in situ carcinomas, invasive carcinomas, and involved lymph nodes. TFF3 was expressed in the majority of benign and malignant breast lesions studied. Well-differentiated tumor types expressed higher levels of TFF3. There was a positive association between TFF3 protein expression and microvessel density, suggesting that it stimulates angiogenesis in breast tumors.

A striking finding of the study is the strength and consistency of the association between TFF3 expression and a more metastatic phenotype in invasive breast cancer. TFF3 was expressed at higher levels in primary tumors with associated metastasis, and its expression was higher in malignant cells that have metastasized away from those within the primary tumor. There appears to be a switch in the normal polarized secretion of TFF3 in invasive cancer, which allows it to exert invasion-promoting effects.

The study suggests that TFF3 may be one of the genes that mediate the various effects of estrogens in breast cancer. "The paradox remains, however, for both the estrogen receptor and TFF3, that they contribute to the normal physiology of the breast epithelium yet are involved in the progression of cancer," notes Dr. May.

Importantly, the investigators also evaluated the potential of TFF3 as a biomarker of lymphovascular invasion and lymph node metastasis. They found that TFF3 had greater predictive power than other markers analyzed, including tumor grade, age, tumor size and type, and estrogen and progesterone receptor status. "Our study reinforces the view that TFF3 expression merits evaluation as a prognostic biomarker and as a predictive marker of response to therapy," concludes Dr. May. "It is probable that its malign effects will be mitigated by adjuvant endocrine therapy in women with hormone-responsive cancers. However, the usefulness of TFF3 as a marker of hormone responsiveness needs to be evaluated."

The article is "TFF3 Is a Normal Breast Epithelial Protein and Is Associated with Differentiated Phenotype in Early Breast Cancer but Predisposes to Invasion and Metastasis in Advanced Disease," by A.R.H. Ahmed, A.B. Griffiths, M.T. Tilby, B.R. Westley, and F.E.B. May (doi: 10.1016/j.ajpath.2011.11.022). It will appear in The American Journal of Pathology, Volume 180, Issue 3 (March 2012) published by Elsevier.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: Cancer Pathology Protein TFF3 breast breast cancer lymph node primary tumor protein expression

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>