Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that functions in normal breast may also contribute to breast cancer metastasis

16.02.2012
Paradox explored in a study reported in the American Journal of Pathology

The trefoil factor 3 (TFF3) protein protects and maintains the integrity of the epithelial surface in the normal breast. New research has found that while TFF3 protein expression is higher in well-differentiated low grade tumors and therefore associated with features of a good prognosis, it has a more sinister role in breast cancer invasion and metastasis. The report is published in the March issue of the American Journal of Pathology.

"Our findings suggest that TFF3 is regulated by estrogen and has beneficial properties in breast epithelia," says lead investigator Felicity E.B. May, PhD, of the Northern Institute for Cancer Research and the Department of Pathology at Newcastle University, UK. "We propose that early during breast tumorigenesis, TFF3 retains its association with normal functionality of breast epithelial cells. Subsequently, with the loss of tumor cell differentiation, its function is subverted to promote the development of tumors and infiltration and lymph node metastasis."

To determine the role of TFF3 in breast cancer, researchers measured its level in tissue samples from normal breasts, benign breast lesions, in situ carcinomas, invasive carcinomas, and involved lymph nodes. TFF3 was expressed in the majority of benign and malignant breast lesions studied. Well-differentiated tumor types expressed higher levels of TFF3. There was a positive association between TFF3 protein expression and microvessel density, suggesting that it stimulates angiogenesis in breast tumors.

A striking finding of the study is the strength and consistency of the association between TFF3 expression and a more metastatic phenotype in invasive breast cancer. TFF3 was expressed at higher levels in primary tumors with associated metastasis, and its expression was higher in malignant cells that have metastasized away from those within the primary tumor. There appears to be a switch in the normal polarized secretion of TFF3 in invasive cancer, which allows it to exert invasion-promoting effects.

The study suggests that TFF3 may be one of the genes that mediate the various effects of estrogens in breast cancer. "The paradox remains, however, for both the estrogen receptor and TFF3, that they contribute to the normal physiology of the breast epithelium yet are involved in the progression of cancer," notes Dr. May.

Importantly, the investigators also evaluated the potential of TFF3 as a biomarker of lymphovascular invasion and lymph node metastasis. They found that TFF3 had greater predictive power than other markers analyzed, including tumor grade, age, tumor size and type, and estrogen and progesterone receptor status. "Our study reinforces the view that TFF3 expression merits evaluation as a prognostic biomarker and as a predictive marker of response to therapy," concludes Dr. May. "It is probable that its malign effects will be mitigated by adjuvant endocrine therapy in women with hormone-responsive cancers. However, the usefulness of TFF3 as a marker of hormone responsiveness needs to be evaluated."

The article is "TFF3 Is a Normal Breast Epithelial Protein and Is Associated with Differentiated Phenotype in Early Breast Cancer but Predisposes to Invasion and Metastasis in Advanced Disease," by A.R.H. Ahmed, A.B. Griffiths, M.T. Tilby, B.R. Westley, and F.E.B. May (doi: 10.1016/j.ajpath.2011.11.022). It will appear in The American Journal of Pathology, Volume 180, Issue 3 (March 2012) published by Elsevier.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: Cancer Pathology Protein TFF3 breast breast cancer lymph node primary tumor protein expression

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>