Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising strategy for treatment of lung cancer

29.03.2010
A research team at the Sahlgrenska Academy at the University of Gothenburg, Sweden, has shown in a study that two closely related enzymes could be targets for the treatment of lung cancer.

The discovery was made when the researchers blocked the production of the two enzymes in transgenic mice. This resulted in inhibition of cell growth, fewer tumours and greater survival among the mice.

The article is being published in the journal Proceedings of the National Academy of Sciences (PNAS). With many types of cancer, the growth and spread of tumours is stimulated by Ras and Rho proteins. For these proteins to function, they need to be modified by the closely related enzymes FT and GGT.

A number of pharmaceutical companies have therefore developed substances that reduce the activity of these two enzymes with the aim of inhibiting the function of Ras and Rho proteins and so slowing the development of the disease.

However, treatment with various substances to block these two enzymes has often been non-specific, and their efficacy has varied widely. This has made it difficult for researchers to assess the true potential of these enzymes as targets for medicines.

"We therefore developed genetic strategies in mice, known as transgenic mice, to switch off the genes coding for FT and GGT, enabling us to investigate whether a complete blockade of FT or GGT can inhibit the development of lung cancer, and whether this has side-effects in the lungs," explains researcher Anna-Karin Sjögren, who led the study together with Meng Liu, both from the Department of Clinical and Molecular Medicine.

In their study, the researchers used transgenic mice which produce a mutated Ras protein that causes lung cancer. First, production of FT or GGT in these mice's lungs was stopped by switching off the relevant genes.

"When we turned off the FT gene, the mice developed fewer lung tumour
s and lived longer," says Meng Liu. "At cellular level, the blockade of FT meant that the tumour cells were no longer able to divide. When we blocked the production of GGT, we saw the same effects: inhibition of cell growth, fewer lung tumours and improved survival."

In experiments where both genes were switched off at the same time, the number of lung tumours dropped sharply and the mice lived much longer. This means that the absence of these two enzymes does not have any obvious side-effects in the lungs, and that lung tumour cells seem to be more sensitive to the treatment than normal lung cells.

"Our findings show that FT and GGT are promising targets for the treatment of lung cancer," the researchers explain. "The next step in our research is to find out whether blocking these enzymes can have side-effects in other tissues."

For more information, please contact:
Researcher Anna-Karin Sjögren, Department of Clinical and Molecular Medicine, Sahlgrenska Academy, tel. +46 (0)31 342 4723,

e -mail: anna-karin.sjogren@wlab.gu.se

Researcher Meng Liu, Department of Clinical and Molecular Medicine, Sahlgrenska Academy, tel. +46 (0)31 3422164, e-mail: meng.liu@wlab.gu.se
Journal: Proceedings of the National Academy of Sciences (Pnas).
Title of article: Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer

Authors: Meng Liu, Anna-Karin M. Sjogren, Christin Karlsson, Mohamed Ibrahim, Karin M.E. Andersson, Frida J. Olofsson, Annika M. Wahlstrom, Martin Dalin, Huiming Yu, Zhenggang Chen, Shao H. Yang, Stephen G. Young, and Martin O. Bergo

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>