Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising strategy for treatment of lung cancer

29.03.2010
A research team at the Sahlgrenska Academy at the University of Gothenburg, Sweden, has shown in a study that two closely related enzymes could be targets for the treatment of lung cancer.

The discovery was made when the researchers blocked the production of the two enzymes in transgenic mice. This resulted in inhibition of cell growth, fewer tumours and greater survival among the mice.

The article is being published in the journal Proceedings of the National Academy of Sciences (PNAS). With many types of cancer, the growth and spread of tumours is stimulated by Ras and Rho proteins. For these proteins to function, they need to be modified by the closely related enzymes FT and GGT.

A number of pharmaceutical companies have therefore developed substances that reduce the activity of these two enzymes with the aim of inhibiting the function of Ras and Rho proteins and so slowing the development of the disease.

However, treatment with various substances to block these two enzymes has often been non-specific, and their efficacy has varied widely. This has made it difficult for researchers to assess the true potential of these enzymes as targets for medicines.

"We therefore developed genetic strategies in mice, known as transgenic mice, to switch off the genes coding for FT and GGT, enabling us to investigate whether a complete blockade of FT or GGT can inhibit the development of lung cancer, and whether this has side-effects in the lungs," explains researcher Anna-Karin Sjögren, who led the study together with Meng Liu, both from the Department of Clinical and Molecular Medicine.

In their study, the researchers used transgenic mice which produce a mutated Ras protein that causes lung cancer. First, production of FT or GGT in these mice's lungs was stopped by switching off the relevant genes.

"When we turned off the FT gene, the mice developed fewer lung tumour
s and lived longer," says Meng Liu. "At cellular level, the blockade of FT meant that the tumour cells were no longer able to divide. When we blocked the production of GGT, we saw the same effects: inhibition of cell growth, fewer lung tumours and improved survival."

In experiments where both genes were switched off at the same time, the number of lung tumours dropped sharply and the mice lived much longer. This means that the absence of these two enzymes does not have any obvious side-effects in the lungs, and that lung tumour cells seem to be more sensitive to the treatment than normal lung cells.

"Our findings show that FT and GGT are promising targets for the treatment of lung cancer," the researchers explain. "The next step in our research is to find out whether blocking these enzymes can have side-effects in other tissues."

For more information, please contact:
Researcher Anna-Karin Sjögren, Department of Clinical and Molecular Medicine, Sahlgrenska Academy, tel. +46 (0)31 342 4723,

e -mail: anna-karin.sjogren@wlab.gu.se

Researcher Meng Liu, Department of Clinical and Molecular Medicine, Sahlgrenska Academy, tel. +46 (0)31 3422164, e-mail: meng.liu@wlab.gu.se
Journal: Proceedings of the National Academy of Sciences (Pnas).
Title of article: Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer

Authors: Meng Liu, Anna-Karin M. Sjogren, Christin Karlsson, Mohamed Ibrahim, Karin M.E. Andersson, Frida J. Olofsson, Annika M. Wahlstrom, Martin Dalin, Huiming Yu, Zhenggang Chen, Shao H. Yang, Stephen G. Young, and Martin O. Bergo

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>