Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prolonged space travel causes brain and eye abnormalities in astronauts

13.03.2012
Magnetic resonance imaging (MRI) of the eyes and brains of 27 astronauts who have spent prolonged periods of time in space revealed optical abnormalities similar to those that can occur in intracranial hypertension of unknown cause, a potentially serious condition in which pressure builds within the skull. A retrospective analysis of the MRI data appears online in the journal Radiology.

A team of researchers performed MRIs and analyzed the data on the 27 astronauts, each of whom were exposed to microgravity, or zero gravity, for an average of 108 days while on space shuttle missions and/or the International Space Station (ISS), a habitable research facility that has been orbiting the earth since 1998. Eight of the 27 astronauts underwent a second MRI exam after a second space mission that lasted an average of 39 days.

"The MRI findings revealed various combinations of abnormalities following both short- and long-term cumulative exposure to microgravity also seen with idiopathic intracranial hypertension," said Larry A. Kramer, M.D., professor of diagnostic and interventional imaging at The University of Texas Medical School at Houston. "These changes that occur during exposure to microgravity may help scientists to better understand the mechanisms responsible for intracranial hypertension in non-space traveling patients."

Among astronauts with more than 30 days of cumulative lifetime exposure to microgravity, findings included expansion of the cerebral spinal fluid space surrounding the optic nerve in nine of the 27 (33 percent) astronauts, flattening of the rear of the eyeball in six (22 percent), bulging of the optic nerve in four (15 percent) and changes in the pituitary gland and its connection to the brain in three (11 percent) of the astronauts. The pituitary gland secretes and stores hormones that regulate a variety of important body functions.

The same types of abnormalities are observed in cases of intracranial hypertension where no cause can be found for increased pressure around the brain. The pressure causes swelling of the juncture between the optic nerve and the eyeball which can result in visual impairment.

Bone mineral loss and muscle atrophy are some of the known effects of zero gravity on astronauts. With the onset of longer excursions in space afforded by the ISS, visual changes have also been observed and are now being studied.

"Microgravity-induced intracranial hypertension represents a hypothetical risk factor and a potential limitation to long-duration space travel," Dr. Kramer said.

William J. Tarver, M.D., M.P.H., chief of flight medicine clinic at NASA/Johnson Space Center, said the agency has noted changes in vision in some ISS astronauts, the origin of which is not yet fully understood. No astronauts have been considered ineligible for space flight duties as a result of the findings, which he said are suspicious but not conclusive of intracranial hypertension.

"NASA has placed this problem high on its list of human risks, has initiated a comprehensive program to study its mechanisms and implications, and will continue to closely monitor the situation," Dr. Tarver said.

"Orbital and Intracranial Effects of Microgravity: Findings at 3-T MR Imaging." Collaborating with Dr. Kramer were Ashot Sargsyan, M.D., Khader M. Hasan, Ph.D., James D. Polk, D.O., and Douglas R. Hamilton, M.D., Ph.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (http://radiology.rsna.org/)

RSNA is an association of more than 48,000 radiologists, radiation oncologists, medical physicists and related scientists committed to excellence in patient care through education and research. The Society is based in Oak Brook, Ill. (RSNA.org)

For patient-friendly information on MRI, visit RadiologyInfo.org.

Linda Brooks | EurekAlert!
Further information:
http://www.rsna.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>