Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production of biofuel from forests will increase greenhouse emissions

24.10.2011
The largest and most comprehensive study yet done on the effect of biofuel production from West Coast forests has concluded that an emphasis on bioenergy would increase carbon dioxide emissions from these forests at least 14 percent, if the efficiency of such operations is optimal.

The findings are contrary to assumptions and some previous studies that suggest biofuels from this source would be carbon-neutral or even reduce greenhouse gas emissions.

In this research, that wasn't true in any scenario.

The study was published today in Nature Climate Change, by scientists from the College of Forestry at Oregon State University and other institutions in Germany and France. It was supported by the U.S. Department of Energy.

During the past four years, the study examined 80 forest types in 19 eco-regions in Oregon, Washington and California, ranging from temperate rainforests to semi-arid woodlands. It included both public and private lands and different forest management approaches.

"On the West Coast, we found that projected forest biomass removal and use for bioenergy in any form will release more carbon dioxide to the atmosphere than current forest management practices," said Tara Hudiburg, a doctoral candidate at OSU and lead author on the study.

"Most people assume that wood bioenergy will be carbon-neutral, because the forest re-grows and there's also the chance of protecting forests from carbon emissions due to wildfire," Hudiburg said. "However, our research showed that the emissions from these activities proved to be more than the savings."

The only exception to this, the researchers said, was if forests in high fire-risk zones become weakened due to insect outbreaks or drought, which impairs their growth and carbon sequestration, as well as setting the stage for major fires. It's possible some thinning for bioenergy production might result in lower emissions in such cases if several specific criteria are met, they said.

"Until now there have been a lot of misconceptions about impacts of forest thinning, fire prevention and biofuels production as it relates to carbon emissions from forests," said Beverly Law, a professor in the OSU Department of Forest Ecosystems and Society and co-author of this study.

"If our ultimate goal is to reduce greenhouse gas emissions, producing bioenergy from forests will be counterproductive," Law said. "Some of these forest management practices may also have negative impacts on soils, biodiversity and habitat. These issues have not been thought out very fully."

The study examined thousands of forest plots with detailed data and observations, considering 27 parameters, including the role of forest fire, emissions savings from bioenergy use, wood product substitution, insect infestations, forest thinning, energy and processes needed to produce biofuels, and many others.

It looked at four basic scenarios: "business as usual"; forest management primarily for fire prevention purposes; additional levels of harvest to prevent fire but also make such operations more economically feasible; and significant bioenergy production while contributing to fire reduction.

Compared to "business as usual" or current forest management approaches, all of the other approaches increased carbon emissions, the study found. Under the most optimal levels of efficiency, management just for fire prevention increased it 2 percent; for better economic return, 6 percent; and for higher bioenergy production, 14 percent.

"However, we don't believe that an optimal efficiency of production is actually possible in real-world conditions," Hudiburg said. "With levels of efficiency that are more realistic, we project that the use of these forests for high bioenergy production would increase carbon emissions 17 percent from their current level."

About 98 percent of the forests in this region are now estimated to be a carbon sink, meaning that even with existing management approaches they sequester more carbon than they release to the atmosphere.

Plans for greenhouse gas reduction call for up to 10 percent lower emissions by 2020, and forest-derived fuels are now seen as a carbon-neutral solution to reducing energy emissions, the researchers note. However, this study suggests that increases in harvest volume on the West Coast, for any reason, will instead result in average increases in emissions above current levels.

Forests capture a large portion of the carbon emitted worldwide, and some of this carbon is stored in pools such as wood and soil that can last hundreds to thousands of years, the scientists said.

"Energy policy implemented without full carbon accounting and an understanding of the underlying processes risks increasing rather than decreasing emissions," the researchers wrote in their report.

Editor's Notes: Graphic images are available to illustrate this story.
Forests and atmospheric carbon: http://bit.ly/pu7cKx
Existing carbon uptake status: http://bit.ly/q0Az86
Impact of different forest management scenarios: http://bit.ly/pc2FqB

Tara Hudiburg | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>