Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New procedure repairs severed nerves in minutes, restoring limb use in days or weeks

03.02.2012
Team apply new procedure to rapidly induce nerve regeneration in mammals

American scientists believe a new procedure to repair severed nerves could result in patients recovering in days or weeks, rather than months or years. The team used a cellular mechanism similar to that used by many invertebrates to repair damage to nerve axons. Their results are published today in the Journal of Neuroscience Research.

"We have developed a procedure which can repair severed nerves within minutes so that the behavior they control can be partially restored within days and often largely restored within two to four weeks," said Professor George Bittner from the University of Texas. "If further developed in clinical trials this approach would be a great advance on current procedures that usually imperfectly restore lost function within months at best."

The team studied the mechanisms all animal cells use to repair damage to their membranes and focused on invertebrates, which have a superior ability to regenerate nerve axons compared to mammals. An axon is a long extension arising from a nerve cell body that communicates with other nerve cells or with muscles.

This research success arises from Bittner's discovery that nerve axons of invertebrates which have been severed from their cell body do not degenerate within days, as happens with mammals, but can survive for months, or even years.

The severed proximal nerve axon in invertebrates can also reconnect with its surviving distal nerve axon to produce much quicker and much better restoration of behaviour than occurs in mammals.

"Severed invertebrate nerve axons can reconnect proximal and distal ends of severed nerve axons within seven days, allowing a rate of behavioural recovery that is far superior to mammals," said Bittner. "In mammals the severed distal axonal stump degenerates within three days and it can take nerve growths from proximal axonal stumps months or years to regenerate and restore use of muscles or sensory areas, often with less accuracy and with much less function being restored."

The team described their success in applying this process to rats in two research papers published today. The team were able to repair severed sciatic nerves in the upper thigh, with results showing the rats were able to use their limb within a week and had much function restored within 2 to 4 weeks, in some cases to almost full function.

"We used rats as an experimental model to demonstrate how severed nerve axons can be repaired. Without our procedure, the return of nearly full function rarely comes close to happening," said Bittner. "The sciatic nerve controls all muscle movement of the leg of all mammals and this new approach to repairing nerve axons could almost-certainly be just as successful in humans."

To explore the long term implications and medical uses of this procedure, MD's and other scientist- collaborators at Harvard Medical School and Vanderbilt Medical School and Hospitals are conducting studies to obtain approval to begin clinical trials.

"We believe this procedure could produce a transformational change in the way nerve injuries are repaired," concluded Bittner.

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>