Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primates' brains make visual maps using triangular grids

29.10.2012
Primates' brains see the world through triangular grids, according to a new study published online Sunday in the journal Nature.

Scientists at Yerkes National Primate Research Center, Emory University, have identified grid cells, neurons that fire in repeating triangular patterns as the eyes explore visual scenes, in the brains of rhesus monkeys.

The finding has implications for understanding how humans form and remember mental maps of the world, as well as how neurodegenerative diseases such as Alzheimer's erode those abilities. This is the first time grid cells have been detected directly in primates. Grid cells were identified in rats in 2005, and their existence in humans has been indirectly inferred through magnetic resonance imaging.

Grid cells' electrical activities were recorded by introducing electrodes into monkeys' entorhinal cortex, a region of the brain in the medial temporal lobe. At the same time, the monkeys viewed a variety of images on a computer screen and explored those images with their eyes. Infrared eye-tracking allowed the scientists to follow which part of the image the monkey's eyes were focusing on. A single grid cell fires when the eyes focus on multiple discrete locations forming a grid pattern.

"The entorhinal cortex is one of the first brain regions to degenerate in Alzheimer's disease, so our results may help to explain why disorientation is one of the first behavioral signs of Alzheimer's," says senior author Elizabeth Buffalo, PhD, associate professor of neurology at Emory University School of Medicine and Yerkes National Primate Research Center. "We think these neurons help provide a context or structure for visual experiences to be stored in memory."

"Our discovery of grid cells in primates is a big step toward understanding how our brains form memories of visual information," says first author Nathan Killian, a graduate student in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "This is an exciting way of thinking about memory that may lead to novel treatments for neurodegenerative diseases."

In the experiments in which rats' grid cells were identified, the cells fired whenever the rats crossed lines on an invisible triangular grid.

"The surprising thing was that we could identify cells that behaved in the same way when the monkeys were simply moving their eyes," Buffalo says. "It suggests that primates don't have to actually visit a place to construct the same kind of mental map."

Another aspect of grid cells not previously seen with rodents is that the cells' responses change when monkeys are seeing an image for the second time. Specifically, the grid cells reduce their firing rate when a repeat image is seen. Moving from the posterior (rear) toward the anterior (front) of the entorhinal cortex, more neurons show memory responses.

"These results demonstrate that grid cells are involved in memory, not just mapping the visual field," Killian says.

Consistent with previous reports on grid cells in rats, Killian and Buffalo observed "theta-band" oscillations, where grid cells fire in a rhythmic way, from 3 to 12 times per second. Some scientists have proposed that theta oscillations are important for grid cell networks to be generated in development, and also for the brain to put together information from the grid cells. In the monkeys, populations of neurons exhibited theta oscillations that occurred in intermittent bouts, but these bouts did not appear to be critical for formation of the spatial representation.

Vision is thought to be a more prominent sense for primates (monkeys and humans) compared with rodents, for whom touch and smell are more important. While grid cells in rodents and primates were detected in different types of experiments, Buffalo says that it doesn't mean grid cells necessarily have a different nature in primates.

"We are now training a monkey to move through a virtual 3-D space. My guess is that we'll find grid cells that fire in similar patterns as the monkey navigates through that space," she says.

Buffalo says future experiments could examine how monkeys navigate in real space, including changes in head or body orientation, to determine how grid cells respond.

Quinn Eastman | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>