Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Preventing and treating drug use with smartphones

UMass Medical School iHeal project uses emerging technologies to detect drug cravings and intervene

Clinical researchers at the University of Massachusetts Medical School (UMMS) are combining an innovative constellation of technologies such as artificial intelligence, smartphone programming, biosensors and wireless connectivity to develop a device designed to detect physiological stressors associated with drug cravings and respond with user-tailored behavioral interventions that prevent substance use. Preliminary data about the multi-media device, called iHeal, was published online first in the Journal of Medical Toxicology.

According to the study's authors, many behavioral interventions used to treat patients are ineffective outside of the controlled clinical settings where they are taught. This failure can be attributed to several factors, including a patient's inability to recognize biological changes that indicate increased risk of relapse and an inability to change their behaviors to reduce health risk.

Edward Boyer, MD, PhD, professor of emergency medicine at UMass Medical School and lead author of the study, worked with colleagues at UMMS and at the Massachusetts Institute of Technology, to design a mobile device using so-called "enabling technologies" that could be used to make behavioral interventions for substance abusers more effective outside the clinic or office environments. The result of their work, iHeal, combines sensors to measure physiological changes and detect trigger points for risky health behaviors, such as substance use, with smartphone software tailored to respond with patient-specific interventions.

Individuals with a history of substance abuse and post-traumatic stress disorder were asked to wear an iHeal sensor band around their wrist that measures the electrical activity of the skin, body motion, skin temperature and heart rate – all indicators of stress. The band wirelessly transmits information to a smartphone, where software applications monitor and process the user's physiological data. When the software detects an increased stress level, it asks the user to annotate events by inputting information about their perceived level of stress, drug cravings, and current activities. This information is then used to identify, in real-time, drug cravings and deliver personalized, multimedia drug prevention interventions precisely at the moment of greatest physiological need.

Boyer and his teams examined the iHeal system architecture, as well as preliminary feedback from initial users, to identify key attributes and assess the device's viability. Their analyses suggest a number of technical issues related to data security, as well as the need for a more robust and less stigmatizing version before the device could be worn in public.

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $277 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit

Jim Fessenden | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>