Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Presence or absence of early language delay alters anatomy of the brain in autism

23.09.2014

A new study led by researchers from the University of Cambridge has found that a common characteristic of autism – language delay in early childhood – leaves a 'signature' in the brain. The results are published today (23 September) in the journal Cerebral Cortex.

The researchers studied 80 adult men with autism: 38 who had delayed language onset and 42 who did not. They found that language delay was associated with differences in brain volume in a number of key regions, including the temporal lobe, insula, ventral basal ganglia, which were all smaller in those with language delay; and in brainstem structures, which were larger in those with delayed language onset.

Additionally, they found that current language function is associated with a specific pattern of grey and white matter volume changes in some key brain regions, particularly temporal, frontal and cerebellar structures.

The Cambridge researchers, in collaboration with King's College London and the University of Oxford, studied participants who were part of the MRC Autism Imaging Multicentre Study (AIMS).

Delayed language onset – defined as when a child's first meaningful words occur after 24 months of age, or their first phrase occurs after 33 months of age – is seen in a subgroup of children with autism, and is one of the clearest features triggering an assessment for developmental delay in children, including an assessment of autism.

"Although people with autism share many features, they also have a number of key differences," said Dr Meng-Chuan Lai of the Cambridge Autism Research Centre, and the paper's lead author. "Language development and ability is one major source of variation within autism. This new study will help us understand the substantial variety within the umbrella category of 'autism spectrum'. We need to move beyond investigating average differences in individuals with and without autism, and move towards identifying key dimensions of individual differences within the spectrum."

He added: "This study shows how the brain in men with autism varies based on their early language development and their current language functioning. This suggests there are potentially long-lasting effects of delayed language onset on the brain in autism."

Last year, the American Psychiatric Association removed Asperger Syndrome (Asperger's Disorder) as a separate diagnosis from its diagnostic manual (DSM-5), and instead subsumed it within 'autism spectrum disorder.' The change was one of many controversial decisions in DSM-5, the main manual for diagnosing psychiatric conditions.

Professor Simon Baron-Cohen, senior author of the study, said "This new study shows that a key feature of Asperger Syndrome, the absence of language delay, leaves a long lasting neurobiological signature in the brain. Although we support the view that autism lies on a spectrum, subgroups based on developmental characteristics, such as Asperger Syndrome, warrant further study."

Dr Lai concluded: "It is important to note that we found both differences and shared features in individuals with autism who had or had not experienced language delay. When asking: 'Is autism a single spectrum or are there discrete subgroups?' - the answer may be both."

###

For additional information, please contact:

Sarah Collins, Office of Communications
University of Cambridge
Tel: +44 (0)1223 765542, Mob: +44 (0)7525 337458
Email: sarah.collins@admin.cam.ac.uk

Notes for editors:

1. This study was supported by the Waterloo Foundation, the UK Medical Research Council (MRC), the Autism Research Trust, the Wellcome Trust, the William Binks Autism Neuroscience Fellowship, and the European Autism Interventions—a Multicentre Study for Developing New Medications (EU-AIMS).

2. The article appears as: Meng-Chuan Lai, Michael V. Lombardo, Christine Ecker, Bhismadev Chakrabarti, John Suckling, Edward T. Bullmore, Francesca Happé, MRC AIMS Consortium, Declan G. M. Murphy and Simon Baron-Cohen. Neuroanatomy of Individual Differences in Language in Adult Males with Autism. Cerebral Cortex. doi:10.1093/cercor/bhu211

3. The Autism Research Centre (ARC) at the University of Cambridge conducts research on both the causes of and interventions for autism spectrum conditions. See http://www.autismresearchcentre.com

Sarah Collins | Eurek Alert!

Further reports about: AIMS Autism Autism Research DSM-5 Syndrome absence autism spectrum differences spectrum volume

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>