Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prenatal Meth Exposure Linked to Abnormal Brain Development

A first of its kind study examining the effects of methamphetamine use during pregnancy has found the drug appears to cause abnormal brain development in children. The research is published in the April 15, 2009, online issue of Neurology®, the medical journal of the American Academy of Neurology.

“Methamphetamine use is an increasing problem among women of childbearing age, leading to an increasing number of children with prenatal meth exposure,” said study author Linda Chang, MD, with the John A. Burns School of Medicine, University of Hawaii at Manoa in Honolulu. “But until now, the effects of prenatal meth exposure on the developing brain of a child were little known.”

For the study, brain scans were performed on 29 three and four-year-old children whose mothers used meth while pregnant and 37 unexposed children of the same ages. The MRI scans used diffusion tensor imaging to help measure the diffusion of molecules in a child’s brain, which can indicate abnormal microscopic brain structures that might reflect abnormal brain development.

The scans showed that children with prenatal meth exposure had differences in the white matter structure and maturation of their brains compared to unexposed children. The children with prenatal meth exposure had up to four percent lower diffusion of molecules in the white matter of their brains.

“Our findings suggest prenatal meth exposure accelerates brain development in an abnormal pattern,” said Chang. “Such abnormal brain development may explain why some children with prenatal meth exposure reach developmental milestones later than others.”

Studies have shown that prenatal meth exposure can lead to increased stress and lethargy and poorer quality of movement for infants.

“While we don’t know how prenatal meth exposure may lead to lower brain diffusion, less diffusion of molecules in white matter typically reflects more compact axonal fibers in the brain,” said Chang. “This is consistent with our prior findings of smaller subcortical structures in children with prenatal meth exposure, which is the portion of the brain immediately below the cerebral cortex.”

Long-term studies are underway to determine if the brain differences found in children with prenatal exposure to meth will normalize with age.

The study was supported by the National Institute on Drug Abuse, the National Center for Research Resources, the National Institute of Neurological Disorders and Stroke and the Office of National Drug Control Policy.

The American Academy of Neurology, an association of more than 21,000 neurologists and neuroscience professionals, is dedicated to improving patient care through education and research. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as multiple sclerosis, restless legs syndrome, Alzheimer’s disease, narcolepsy, and stroke.

Rachel Seroka | American Academy of Neurology
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>