Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Prenatal Meth Exposure Linked to Abnormal Brain Development

A first of its kind study examining the effects of methamphetamine use during pregnancy has found the drug appears to cause abnormal brain development in children. The research is published in the April 15, 2009, online issue of Neurology®, the medical journal of the American Academy of Neurology.

“Methamphetamine use is an increasing problem among women of childbearing age, leading to an increasing number of children with prenatal meth exposure,” said study author Linda Chang, MD, with the John A. Burns School of Medicine, University of Hawaii at Manoa in Honolulu. “But until now, the effects of prenatal meth exposure on the developing brain of a child were little known.”

For the study, brain scans were performed on 29 three and four-year-old children whose mothers used meth while pregnant and 37 unexposed children of the same ages. The MRI scans used diffusion tensor imaging to help measure the diffusion of molecules in a child’s brain, which can indicate abnormal microscopic brain structures that might reflect abnormal brain development.

The scans showed that children with prenatal meth exposure had differences in the white matter structure and maturation of their brains compared to unexposed children. The children with prenatal meth exposure had up to four percent lower diffusion of molecules in the white matter of their brains.

“Our findings suggest prenatal meth exposure accelerates brain development in an abnormal pattern,” said Chang. “Such abnormal brain development may explain why some children with prenatal meth exposure reach developmental milestones later than others.”

Studies have shown that prenatal meth exposure can lead to increased stress and lethargy and poorer quality of movement for infants.

“While we don’t know how prenatal meth exposure may lead to lower brain diffusion, less diffusion of molecules in white matter typically reflects more compact axonal fibers in the brain,” said Chang. “This is consistent with our prior findings of smaller subcortical structures in children with prenatal meth exposure, which is the portion of the brain immediately below the cerebral cortex.”

Long-term studies are underway to determine if the brain differences found in children with prenatal exposure to meth will normalize with age.

The study was supported by the National Institute on Drug Abuse, the National Center for Research Resources, the National Institute of Neurological Disorders and Stroke and the Office of National Drug Control Policy.

The American Academy of Neurology, an association of more than 21,000 neurologists and neuroscience professionals, is dedicated to improving patient care through education and research. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as multiple sclerosis, restless legs syndrome, Alzheimer’s disease, narcolepsy, and stroke.

Rachel Seroka | American Academy of Neurology
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>