Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Precipitation variability in Northeast, Southwest linked in 1,000-year analysis

Results validate climate predictions of increased extreme weather events

An analysis of precipitation data collected from a lakebed in New York and a Rhode Island estuary has provided a link between the variability of precipitation in the Northeast with that of the Southwest. The results validate climate models that predict an increasing number of extreme weather events.

The research was published in the online edition of the Proceedings of the National Academy of Sciences on Oct. 19.

Former URI graduate student J. Bradford Hubeny, currently an assistant professor of geological sciences at Salem State University, and John King, a professor in the University of Rhode Island's Graduate School of Oceanography, reconstructed the precipitation record from Green Lake in Fayetteville, N.Y., and the Pettaquamscutt River estuary in Narragansett, R.I. They found that the moisture patterns at these sites were similar and correlated with the Pacific/North American pattern, a large-scale weather pattern that circulates from the North Pacific Ocean across North America.

"Really long droughts and extended wet periods appear to occur at a continental scale," said King. "We can see that the records of droughts in the Southwest extend all the way to eastern North America."

Added Hubeny, "The same phase of the Pacific/North American pattern that would bring us dry conditions in the Northeast would also bring dry conditions to the Southwest."

The scientists noted that while their research found a strong connection between the climate in the Northeast and Southwest, that doesn't necessarily mean that both regions will experience the same conditions.

Hubeny and King reconstructed the precipitation record by examining the thickness of annual sediment layers called varves, somewhat like tree rings, which relate to the amount of precipitation in a given year.

"The strength of going back 1,000 years is that we can look at the natural variability in the precipitation record," Hubeny said. "What we can see from the last 150 to 200 years are changes in the natural pattern that could represent human impact on climate.

"At first glance, precipitation variability might seem random, and to some extent it is. But there are also global patterns that are predictable," he explained. "The more we can understand these patterns, the more we can help to quantify climate models and cycles."

According to the scientists, the objective of studies such as this is to provide improved predictive capabilities of future climate. The strong relationship this study provides between the meteorological record and the geological record will help make climate forecasts more accurate.

"We've confirmed the recent trend toward a more meridional circulation pattern, which increases the frequency of flooding and decreases the frequency of droughts in the Northeast," King said. "The unusual weather is going to become more usual. The good news is that we probably won't have mega-droughts like they're experiencing in other parts of the country, but we will be in for more extreme weather events."

Todd McLeish | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>