Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Powerful new ways to electronically mine research may lead to scientific breakthroughs

11.02.2011
The Internet has become not only a tool for disseminating knowledge through scientific publications, but it also has the potential to shape scientific research through expanding the field of metaknowledge—the study of knowledge itself.

The new possibilities for metaknowledge include developing a better understanding of science's social context and the biases that can affect research findings and choices of research topics, according to an article published by University of Chicago researchers in the journal Science.

Pooling research-related information online can shed light on how scientists' personal backgrounds or funding sources shape their research approaches, and could open up new fields of study, wrote James Evans, assistant professor in sociology at the University of Chicago, and Jacob Foster, a post-doctoral scholar at the University, in an analysis supported with a National Science Foundation grant.

"The computational production and consumption of metaknowledge will allow researchers and policymakers to leverage more scientific knowledge—explicit, implicit, contextual—in their efforts to advance science," the two wrote in the Perspectives article "Metaknowledge," published in the Feb. 11 issue of Science. Metaknowledge is essential in a digital era in which so many investigations are linked electronically, they point out.

An important new tool for metaknowledge researchers seeking previously hidden connections is natural language processing, one of the rapidly emerging fields of artificial intelligence. NLP permits machine reading, information extraction and automatic summarization.

Researchers at Google used computational content analysis to identify the emergence of influenza epidemics by identifying and tracking related Google searches. The process was faster than other techniques used by public health officials. These content analysis techniques complement the statistical techniques of meta-analysis, which typically incorporate data from many different studies in an effort to draw a larger conclusion about a research question, such as the influence of class size on student achievement.

For scientific research, meta-analysis can trace the connections between data and conclusions in ways that might not otherwise be noticed. For example, the availability of samples from the Southern Hemisphere related to continental drift has influenced the way in which geologists have made conclusions about plate tectonics.

Metaknowledge also has unveiled the possibility of "ghost theories" implicit assumptions that may undergird scientific conclusions, even when researchers do not acknowledge them. For example, psychologists frequently use college students as research subjects and accordingly publish papers based on the behavior of a group that may or may not be typical of the entire population. Scholars using traditional metaknowledge techniques found that 67 percent of the papers published in the Journal of Personality and Social Behavior were based on studies of undergraduates. The use of computation could accelerate and widen the discovery of such ghost theories.

Entrenched scientific ideas can develop when studies repeatedly find conclusions that support previous claims by well-known scholars and also when students of distinguished researchers go on to do their own work, which also reinforces previous claims. Both of those trends can be uncovered by scholars working in metaknowledge, Evans and Foster said.

Metaknowledge also helps scholars understand the role funding plays in research. "There is evidence from metaknowledge that embedding research in the private or public sector modulates its path," they write. "Company projects tend to eschew dogma in an impatient hunt for commercial breakthroughs, leading to rapid but unsystematic accumulation of knowledge, whereas public research focuses on the careful accumulation of consistent results."

The promise of metaknowedge is its capacity to steer researchers to new fields, they said.

"Metaknowledge could inform individual strategies about research investment, pointing out overgrazed fields where herding leads to diminishing returns as well as lush range where premature certainty has halted promising investigation," Evans and Foster said.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>