Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Post-Olympics Emissions from China Studied by Team

10.07.2009
A Valparaiso University researcher, Dr. Gary Morris, and two undergraduate students are traveling to Japan to study the impact of China's steps to reduce air pollution and shed light on how emissions from China affect other nations.

A year after China took drastic measures to reduce air pollution and clear Beijing’s often hazy skies for the Olympic Games, a Valparaiso University research team is traveling to Japan to study the impact of those efforts and shed greater light on how emissions from China are affecting other nations. Valpo is a member of the Council on Undergraduate Research.

Dr. Gary Morris, an associate professor of physics and astronomy who has conducted extensive research of the transport of air pollution over long distances, and two undergraduate students will travel to Japan later this month to continue an air pollution research project that started last summer.

Valpo’s research team will replicate its 2008 work – when it launched 10 research balloons before, during and following the Olympics. Direct comparisons between the two years of data will provide insight into the impact of China’s pollution on air quality in Japan.

“There’s pretty clear evidence that Japan’s air quality is being negatively affected by Chinese emissions, but the question is to what extent,” said Dr. Morris, whose project is supported by a Fulbright Scholar grant and NASA’s Office of Earth Sciences.

Accompanying him to assist with the balloon launches and data analysis are Nathan Kellams, a junior physics major from Portage, and Ted Pietrzak, a junior meteorology major from Edwardsburg, Mich.

Pietrzak said sensors will continuously monitor ozone and sulfur dioxide pollution levels as the balloons rise to an altitude of more than 100,000 feet.

“Using computer models and weather data, we can gauge where pollution has come from on the days we release our balloons,” Pietrzak said.

Dr. Morris and his students will conduct their balloon launches at Hokkaido University. While the students will return to campus in late August, Dr. Morris will remain in Japan until late December and analyze pollution data at the Frontier Research Center for Global Change in Yokohama.

Following this summer’s research, Dr. Morris says the data collected will better quantify how much air pollution China is generating, show how that pollution is affecting neighboring Japan and indicate the effectiveness of China’s pollution control strategy for the Olympics.

Dr. Morris said last year’s research indicates air pollution generated in China can substantially impact air quality in Japan. An Aug. 6 balloon launch in Sapporo, two days before the start of the Olympics, showed a band of ozone approximately one kilometer above the city that was more than three times higher than the normal ozone level.

“That’s a pretty good sign of transported air pollution,” he said.

During the 2008 Olympics, Beijing enjoyed clear skies, which Dr. Morris said likely resulted from a combination of China’s efforts to slash air pollution and favorable meteorological conditions.

In May, Dr. Morris co-chaired a special session at the American Geophysical Union meeting in Toronto that focused on air pollution and its interactions with weather and climate in East Asia before, during and after the Beijing Olympics. Dr. Morris and other researchers studying East Asian pollution in 2008 shared what they learned about pollution in China and the effectiveness of China’s pollution control measures.

“That was a good opportunity to see what everyone else was working on and I think that it will spur some future collaboration between scientists studying air pollution,” Dr. Morris said.

Before the end of his five months in Japan, Dr. Morris hopes to travel to Beijing and meet with air pollution researchers there.

“China has very high density industrial regions that generate significant air pollution with very few emission control measures,” he said. “It’s a growing concern in the region and beyond.”

During his time in Japan this summer and fall, Dr. Morris will post updates about the research and data collected online at physics.valpo.edu/ozone/fulbrightdata.html as well as on his project blog at polympics.wordpress.com.

The research project fits Pietrzak’s interests in pursuing a career in environmental work that would focus on sustainable lifestyles within industrial civilization.

“I have great interest in the ways humans negatively alter the Earth’s natural state, and air pollution is a critical problem that I can help research,” Pietrzak said.

Kellams, who has been working on a particle research project with Valpo physics faculty this summer, said the air pollution project provides an opportunity to get involved in a new area of research.

“One of the reasons I am taking on the environmental project with Dr. Morris is not only because the topic is interesting, but also to broaden my experience as a researcher,” Kellams said.

Dr. Morris has previously conducted research on air pollution emitted from countries in East Asia during spring 2006 as part of a NASA research project, and he has studied air pollution in Houston since 2004, launching nearly 300 balloons over the past five years.

Dustin J. Wunderlich | Newswise Science News
Further information:
http://www.cur.org/

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>