Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Population trends: Another influence on climate change

12.10.2010
Changes in population growth and composition, including aging and urbanization, could significantly affect global emissions of carbon dioxide over the next 40 years, according to a new study out next week.

The research, appearing in Proceedings of the National Academy of Sciences (PNAS), was conducted by an international team of scientists from the National Center for Atmospheric Research (NCAR), the International Institute for Applied Systems Analysis (IIASA), and the National Oceanographic and Atmospheric Administration. It was funded by a European Young Investigator's Award, the Hewlett Foundation, and the National Science Foundation, which is NCAR's sponsor.

By mid-century it is estimated that global population could rise by more than three billion people, with most of that increase occurring in urban areas. The study showed that a slowing of population growth, following one of the slower growth paths considered plausible by demographers at the United Nations, could contribute to significantly reducing greenhouse gas emissions. The researchers found that such slow growth paths by 2050 could account for 16 to 29 percent of the emissions reductions thought necessary to keep global temperatures from causing serious impacts. The effect of slower population growth on greenhouse gas emissions would be even larger by the end of the century.

"If global population growth slows down, it is not going to solve the climate problem, but it can make a contribution, especially in the long term," says the study's lead author, Brian O'Neill, an NCAR scientist.

O'Neill's co-author, IIASA scientist Shonali Pachauri, says that slower population growth will have different influences, depending on where it occurs.

"A slowing of population growth in developing countries today will have a large impact on future global population size. However, slower population growth in developed countries will matter to emissions, too, because of higher per capita energy use," says Pachauri.

Scientists have long known that changes in population will have some effect on greenhouse gas emissions, but there has been debate on how large that effect might be.

Urbanization and aging

The researchers sought to quantify how demographic changes influence emissions over time, and in which regions of the world. They also went beyond changes in population size to examine the links between aging, urbanization, and emissions.

The team found that growth in urban populations could lead to as much as a 25 percent rise in projected carbon dioxide emissions in some developing countries. The increased economic growth associated with city dwellers was directly correlated with increased emissions, largely due to the higher productivity and consumption preferences of an urban labor force.

In contrast, aging can reduce emissions levels by up to 20 percent in some industrialized countries. This is because older populations are associated with lower labor force participation, and the resulting lower productivity leads to lower economic growth.

"Demography will matter to greenhouse gas emissions over the next 40 years," says O'Neill. "Urbanization will be particularly important in many developing countries, especially China and India, and aging will be important in industrialized countries."

The researchers worked with projections showing that population aging will occur in all regions of the world, a result of people living longer and declines in fertility.

Future scenarios of human behavior

The authors developed a set of economic growth, energy use, and emissions scenarios, using a new computer model (the Population-Environment-Technology model, or PET). To capture the effects of future demographic change, they distinguished between household types, looking at age, size, and urban vs. rural location.

In addition, they drew on data from national surveys covering 34 countries and representative of 61 percent of the global population to estimate key economic characteristics of household types over time, including labor supply and demand for consumer goods.

"Households can affect emissions either directly, through their consumption patterns, or indirectly, through their effects on economic growth," O'Neill explains.

The authors also suggest that developers of future emissions scenarios give greater consideration to the implications of urbanization and aging, particularly in the United States, European Union, China, and India.

"Further analysis of these trends would improve our understanding of the potential range of future energy demand and emissions," says O'Neill.

The researchers caution that their findings do not imply that policies affecting aging or urbanization should be implemented as a response to climate change, but rather that better understanding of these trends would help anticipate future changes.

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Scientific contacts:

Brian O'Neill, NCAR Scientist
303-497-8118
boneill@ucar.edu
Shonali Pachauri, IIASA Scientist
+ 43 (0) 2236 807 475
pachauri@iiasa.ac.at

Rachael Drummond | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>