Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Being Poor Can Suppress Children's Genetic Potentials

11.01.2011
Growing up poor can suppress a child's genetic potential to excel cognitively even before the age of 2, according to research from psychologists at The University of Texas at Austin.

Half of the gains that wealthier children show on tests of mental ability between 10 months and 2 years of age can be attributed to their genes, the study finds. But children from poorer families, who already lag behind their peers by that age, show almost no improvements that are driven by their genetic makeup.

The study of 750 sets of twins by Assistant Professor Elliot Tucker-Drob does not suggest that children from wealthier families are genetically superior or smarter. They simply have more opportunities to reach their potential.

These findings go to the heart of the age-old debate about whether "nature" or "nurture" is more important to a child's development. They suggest the two work together and that the right environment can help children begin to reach their genetic potentials at a much earlier age than previously thought.

"You can't have environmental contributions to a child's development without genetics. And you can't have genetic contributions without environment," says Tucker-Drob, who is also a research associate in the university's Population Research Center. "Socioeconomic disadvantages suppress children's genetic potentials."

The study, published in the journal Psychological Science, was co-authored by K. Paige Harden of The University of Texas at Austin, Mijke Rhemtulla of The University of Texas at Austin and the University of British Columbia, and Eric Turkheimer and David Fask of the University of Virginia.

The researchers looked at test results from twins who had taken a version of the Bayley Scales of Infant Development at about 10 months and again at about 2 years of age. The test, which is widely used to measure early cognitive ability, asks children to perform such tasks as pulling a string to ring a bell, putting three cubes in a cup and matching pictures.

At 10 months, there was no difference in how the children from different socioeconomic backgrounds performed. By 2 years, children from high socioeconomic background scored significantly higher than those from low socioeconomic backgrounds.

In general, the 2-year-olds from poorer families performed very similarly to one another. That was true among both fraternal and identical twins, suggesting that genetic similarity was unrelated to similarities in cognitive ability. Instead, their environments determine their cognitive success.

Among 2-year-olds from wealthier families, identical twins (who share identical genetic makeups) performed very similarly to one another. But fraternal twins were not as similar — suggesting their different genetic makeups and potentials were already driving their cognitive abilities.

"Our findings suggest that socioeconomic disparities in cognitive development start early," says Tucker-Drob. "For children from poorer homes, genetic influences on changes in cognitive ability were close to zero. For children from wealthier homes, genes accounted for about half of the variation in cognitive changes."

The study notes that wealthier parents are often able to provide better educational resources and spend more time with their children but does not examine what factors, in particular, help their children reach their genetic potentials. Tucker-Drob is planning follow-up studies to examine that question.

For more information, contact: Gary Susswein, College of Liberal Arts, 512 471 4945; Elliot Tucker-Drob

Gary Susswein | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>