Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poor 'gut sense' of numbers contributes to persistent math difficulties

17.06.2011
Study reveals math learning disabilities are caused by multiple factors, including poor intuition in gauging numerical quantities

A new study published today in the journal Child Development (e-publication ahead of print) finds that having a poor "gut sense" of numbers can lead to a mathematical learning disability and difficulty in achieving basic math proficiency. This inaccurate number sense is just one cause of math learning disabilities, according to the research led by Dr. Michele Mazzocco of the Kennedy Krieger Institute.

Approximately 6 to 14 percent of school-age children have persistent difficulty with mathematics, despite adequate learning opportunities and age-appropriate achievement in other school subjects. These learning difficulties can have lifelong consequences when it comes to job success and financial decision-making. Heightened interest in the nature and origins of these learning difficulties has led to studies to define mathematical learning disability (MLD), identify its underlying core deficits, and differentiate children with MLD from their mathematically successful counterparts.

The new Kennedy Krieger study showed that children with a confirmed math learning disability have a markedly inaccurate number sense compared to their peers. But Dr. Mazzocco said students without a MLD who were below average in achievement performed on the number sense tasks as well as those considered average. For them, number sense doesn't seem to be the trouble.

"Some children have a remarkably imprecise intuitive sense of numbers, and we believe these children have math learning disability, at least in part, due to deficits in this intuitive type of number sense," said Dr. Mazzocco, Director of the Math Skills Development Project at Kennedy Krieger. "But other students who underperform in math do so despite having an intact number sense. This demonstrates the complexity of determining precisely what influences or interferes with a child's mathematical learning. Difficulty learning math may result from a weak number sense but it may also result from a wide range of other factors such as spatial reasoning or working memory. While we should not assume that all children who struggle with mathematics have a poor number sense, we should consider the possibility."

To gauge their sense of numbers, Dr. Mazzocco and colleagues tested 71 children who were previously enrolled in a 10-year longitudinal study of math achievement. The students, all in the ninth grade, completed two basic number sense tasks. In the number naming task, they were shown arrays of dots and asked to judge how many dots were present, without allowing enough time to actually count them. In the number discrimination task, the children were shown arrays of blue dots and yellow dots and asked to determine whether the blue or yellow array had more dots, again, without time to count them.

The researchers then compared the performance of four groups of students, who over the 10-year study, consistently showed having either a MLD, below average, average or above average math achievement.

Students with MLD performed significantly worse than their peers on both of the number tasks. The study findings suggest that an innate ability to approximate numbers, an intact ability present in human infants and many other species, contributes to more sophisticated math abilities later in life, while a less accurate ability underlies MLD. Additionally, the findings reveal that a poor number sense is not the only potential source of math difficulties, reinforcing that a 'one size fits all' educational approach may not be the best for helping children who struggle with math.

"A key message for parents and teachers is that children vary in the precision of their intuitive sense of numbers. We might take for granted that every child perceives numbers with roughly comparable precision, but this assumption would be false. Some students may need more practice, or different kinds of practice, to develop this number sense," Dr. Mazzocco said. "At the same time, if a child is struggling with mathematics at school, we should not assume that the child's difficulty is tied to a poor number sense; this is just one possibility."

The study was supported by a grant from the National Institute of Child Health and Human Development. Co-investigators on the study were Lisa Feigenson and Justin Halberda of Johns Hopkins University.

About the Kennedy Krieger Institute

Internationally recognized for improving the lives of children and adolescents with disorders and injuries of the brain and spinal cord, the Kennedy Krieger Institute in Baltimore, MD serves more than 16,000 individuals each year through inpatient and outpatient clinics, home and community services and school-based programs. Kennedy Krieger provides a wide range of services for children with developmental concerns mild to severe, and is home to a team of investigators who are contributing to the understanding of how disorders develop while pioneering new interventions and earlier diagnosis. For more information on Kennedy Krieger Institute, visit www.kennedykrieger.org.

Colleen Butz | EurekAlert!
Further information:
http://www.kennedykrieger.org

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>