Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU study sheds light on prevention of heat stroke for outdoor workers

18.06.2012
A pioneering study by researchers of The Hong Kong Polytechnic University (PolyU) has shed light on the prevention of heat stroke for outdoor workers in a scientific manner. One of the major recommendations is to link up the Very Hot Weather Signal issued by the Hong Kong Observatory with additional breaks for outdoor workers on stuffy work days.

The study has brought together the expertise of PolyU’s Department of Building and Real Estate (BRE), The Hong Kong Institute of Education and the Technological and Higher Education Institute of Hong Kong; with Professor Albert Chan of BRE leading the inter-disciplinary team made up of construction health and safety, exercise physiology, health science, and building science experts.

It was based on a number of clinical and field studies to determine the best recovery time for steelworkers who have worked to exhaustion in a hot and humid environment at construction sites.

Based on 411 sets of meteorological and physiological data collected over 19 hot and humid days in last summer, researchers have developed a sophisticated model to compute the optimal recovery time. It was found that on average, a steelworker could achieve 58 per cent recovery in five minutes, 78 per cent in 15 minutes and 92 per cent in 30 minutes. The longer they have the resting period, the better the recovery of their strength.
The various stakeholders, including the government, developers, contractors, trade union representatives can negotiate and agree amongst themselves how often rest time should be given between works and how long each break should last based on the objective and scientific findings of the study.

According to the study, heat stress is determined by ten critical factors. Drinking habit, age and work duration are the top three factors to determine steelworkers’ physiological responses. Other factors include air pollution index, percentage of body fat, smoking habit, Wet Bulb Globe Temperature Index (measured primarily by temperature and relative humidity), respiratory exchange rate, resting heart rate, and energy consumption.

Professor Albert Chan also advised site workers not to consume any alcoholic drink during lunch time as it will lead to dehydration and make the workers prone to heat stress. In the next stage, Professor Chan and his team will study anti-heat stress clothing for workers.

The joint study was supported by General Research Funding of the Research Grants Council. It was also supported by the Hong Kong Housing Authority, Sun Hung Kai Properties Ltd., Yau Lee Construction Co Ltd., and China State Construction Engineering (HK) Ltd.

The research finding was published in Building and Environment, an authoritative international journal of building science and its applications.

Press contact: Professor Albert Chan
Professor in the Department of Building and Real Estate,
Tel: (852) 2766 5814
Email: bsachan@polyu.edu.hk

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

nachricht Pan-European study on “Smart Engineering”
30.03.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>