Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU Optometry Experts Prove the Effectiveness of Orthokeratology in Myopic Control

11.01.2012
After a lengthy study spanning over four years, Professor Pauline Cho from the School of Optometry at The Hong Kong Polytechnic University (PolyU) and her research team concluded that orthokeratology not only can correct refractive error, but also effective in slowing the progression of myopia.

Myopia (or shortsightedness) is the most prevalent eye problem in Hong Kong population and especially for school children. Local Chinese students have a higher prevalence of myopia regardless of whether they attend in local or international schools when compared with other ethnic groups. Myopia will bring inconvenience in everyday life and serious myopia is associated with retinal degeneration, peripheral retinal breaks and glaucoma which may lead to permanent vision loss and blindness.

Orthokeratology is a non-surgical means of vision correction which must be administered by registered optometrists. Myopia is a refractive defect of the eye in which collimated light produces image focus in front of the retina. The longer the eyeball length, the higher degree of myopia. Patients who wish to receive ortholeratology must have a thorough eye examination to see if he or she is suitable for the treatment. Optometrist will dispense a pair of specially designed rigid contact lens made from high oxygen permeable material for wearing during sleep time. The lens will modify the corneal shape as well as to correct the focus of the eye in order to correct the wearer's vision. If successful, wearer can have clear vision without using any vision aids for the rest of the day.

In 1997, PolyU's School of Optometry established The Centre for Myopia Research to conduct clinical, genomic and proteomic research using a multi-disciplinary approach, pulling in expertise from all areas of clinical and basic science. Professor Pauline Cho is a pioneer in research on myopic control and has published her findings in Current Eye Research Journal in 2005. She and her team found evidence that orthokeratology may have a potential for controlling the progression of myopia in children, apart from vision correction. To further confirm the potential of orthokeratology, Professor Cho and her team commenced two clinical trials named ROMIO (Retardation Of Myopia In Orthokeratology) and TO-SEE (Toric Orthokeratology-Slowing Eyeball Elongation) in 2008.

The ROMIO study is the first randomized, single masked study in the world to investigate the effectiveness of orthokeratology for myopic control in children. Participants were 77 children aged 7 to 10 years old with myopia not more than 4.00D and were randomly assigned to orthokeratology or spectacle group. At the end of 24 months of the research, the increase in eyeball length in the orthokeratology group is 0.36mm and in whereas that of the spectacle group which is 0.63mm. The results prove that the increase of eyeball length in children wearing orthokeratology lenses was about 43% slower than those wearing spectacles.

In the TO-SEE study, 37 children aged 6 to 12 years old were recruited and to study the potential of orthokeratology in reduction of astigmatism. Myopia of the participants was not more than 4.50D and astigmatism between 1.25D and 3.50D. Professor Cho and her team found that toric design orthokeratology effectively reduced the astigmatism by 79% after one month of lens wear. At the end of 24 months, the eyeball length of the participants was 0.31mm which also showed significance proof on myopic control.

Professor Cho says due to advancement in science and technology, the design and materials of orthokeratology lens were greatly improved. The high oxygen permeable lens with enhanced corneal reshaping potential brings convenience to wearers in daily life. If wearers strictly follow the instructions of the optometrist and have regular check-up, over 60% of their myopia could be reduced after one overnight lens wear and the rest over two to four weeks.

Orthokeratology is a reversible treatment and can be stopped anytime. With the clinically proved results in refractive error correction, myopic control and astigmatism reduction, it represents a safe and effective solution for people with myopia.

Press contact: Ms Carolyn Wong
Faculty of Health and Social Sciences
Tel: (852) 3400 3973
Email: carolyn.wong@polyu.edu.hk

Regina Yu | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>