Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar bears are evolutionary older than previously known: ancestry traced back to 600,000 years ago

20.04.2012
A study appearing in the current issue of the journal “Science” reveals that polar bears evolved as early as some 600,000 years ago.
An international team led by researchers from the German Biodiversity and Climate Research Centre (BiK-F) shows the largest arctic carnivore to be five times older than previously recognized. The new findings on the evolutionary history of polar bears are the result of an analysis of information from the nuclear genome of polar and brown bears, and shed new light on conservation issues regarding this endangered arctic specialist.

Polar bears are uniquely specialized for life in the arctic. This fact is undispu-ted, and supported by a range of morphological, physiological and behavioural evidence. However, conducting research on the evolutionary history of polar bears is difficult. The arctic giant spends most of its life on sea ice, and typically also dies there. Its remains sink to the sea floor, where they get ground up by glaciers, or remain undiscovered. Fossil remains of polar bears are therefore scarce. Because the genetic information contained in each organism carries a lot of information about the past, researchers can study the history of the species by looking at the genes of today’s polar bears.

Analysis of the genetic information in the cell nucleus
Recent studies had suggested that the ancestor of polar bears was a brown bear that lived some 150,000 years ago, in the late Pleistocene. That research was based on DNA from the mitochondria - organelles often called the ‘powerhouses of the cell’. Researchers from the German Biodiversity and Climate Research Centre (BiK-F), together with scientists from Spain, Sweden and the USA, now took an in-depth look at the genetic information contained in the cell nucleus. Frank Hailer, BiK-F, lead author of the study explains: “Instead of the traditional approach of looking at mitochondrial DNA we studied many pieces of nuclear DNA that are each independently inherited. We characterized those pieces, or genetic markers, in multiple polar and brown bear individuals”.

Polar bears had much more time for adaptation and speciation than previously assumed
This genetic survey was well worth the effort - the information obtained from nuclear DNA indicates that polar bears actually evolved in the mid Pleistocene, some 600,000 years ago. This provides much more time for the polar bear ancestors to colonize and adapt to the harsh conditions of the arctic. Based on studies of mitochondrial DNA, polar bears had earlier been considered an example of surprisingly rapid adaptation of a mammal to colder climates. The polar bear’s specific adaptations, including its black skin, white fur, and fur-covered feet now seem less surprising. “In fact, the polar bear genome harbours a lot of distinct genetic information”, says Hailer, “which makes a lot of sense, given all the unique adaptations in polar bears”.

Maternally inherited (mitochondrial) DNA was showing a biased picture
Previous studies of mitochondrial DNA had indicated that polar bears are much younger as a species. The authors of the new paper in “Science” explain this apparent discrepancy with past events of hybridization between polar and brown bears - a process recently observed in the Canadian arctic. After their initial speciation, polar bears and brown bears came into contact again, maybe due to past climatic fluctuations. The mitochondrial DNA found in polar bears today was probably inherited from a brown bear female that hybridized with polar bears at some point in the late Pleistocene. It appears that much of the nuclear genome remained unaffected by hybridization, so polar bears retained their genetic distinctiveness. “Each part of the genome tells its own story. In our study we analysed nuclear DNA that is inherited from both parents. It provides a more detailed and accurate picture of the evolutionary history of a species than mitochondrial DNA that is inherited only from the mother”, says Axel Janke, BiK-F, senior author on the study who also headed the recent sequencing of the brown bear genome. He goes on to say: “Inferring a species’ evolutionary history based on mitochondrial DNA alone is like solving a puzzle with only a few of the many available pieces. You need to study many genetic markers (loci) to put together the full picture.”
Genome carries evidence of past climate fluctuations
The new genetic data indicate that polar bears went through tough times over the course of their 600,000 year-old evolutionary history. Polar bears show much less genetic diversity than brown bear. This is probably due to dramatic reductions in population size in the past. Maybe those times coincided with phases of climatic warming. Whether polar bears will be able to survive the current phase of sea ice melting is not clear. Firstly, human impacts are accelerating the rate of climate change, and the arctic could reach higher temperatures than in previous interglacial warm phases. In addition, numerous human-related issues are threatening the polar bear today. Polar bears colonizing coastal regions due to sea ice melting frequently encounter human habitat, and many bears are killed. Besides persecution, polar bears are also facing other - evolutionarily novel - threats, including pollution by persistent chemicals in the food chain. “If we were to lose polar bears in our era, we would have to ask ourselves what role we played in pushing them over the edge. They clearly were able to survive previous warm phases”, Hailer concludes upon the wider implications of the study.

The authors of the study are:
Frank Hailer (lead author), Verena E. Kutschera, Björn M. Hallström, Denise Klassert, Axel Janke (senior author) -- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany. Jennifer A. Leonard -- Doñana Biological Station - CSIC, Seville, Spain. Steven R. Fain -- US Fish and Wildlife Service, Forensics lab, Ashland, OR, USA. Ulfur Arnason -- Lund University, Lund, Sweden.

Paper:
Hailer, F. et al. (2012). Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage. Science. DOI: 10.1126/science.1216424

For further information please contact:

Frank Hailer, Ph.D. (lead author)
LOEWE Biodiversity and Climate Research Centre (BiK-F)
phone +49 69 798 24733
frank.hailer@senckenberg.de

Prof. Axel Janke
LOEWE Biodiversity and Climate Research Centre (BiK-F) and Goethe University Frankfurt am Main
phone +49 69 7542 1842
axel.janke@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F), Pressereferentin
phone +49 69 7542 1838
sabine.wendler@senckenberg.de

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

Sabine Wendler | Senckenberg
Further information:
http://www.bik-f.de
http://www.senckenberg.de

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>