Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar bears are evolutionary older than previously known: ancestry traced back to 600,000 years ago

20.04.2012
A study appearing in the current issue of the journal “Science” reveals that polar bears evolved as early as some 600,000 years ago.
An international team led by researchers from the German Biodiversity and Climate Research Centre (BiK-F) shows the largest arctic carnivore to be five times older than previously recognized. The new findings on the evolutionary history of polar bears are the result of an analysis of information from the nuclear genome of polar and brown bears, and shed new light on conservation issues regarding this endangered arctic specialist.

Polar bears are uniquely specialized for life in the arctic. This fact is undispu-ted, and supported by a range of morphological, physiological and behavioural evidence. However, conducting research on the evolutionary history of polar bears is difficult. The arctic giant spends most of its life on sea ice, and typically also dies there. Its remains sink to the sea floor, where they get ground up by glaciers, or remain undiscovered. Fossil remains of polar bears are therefore scarce. Because the genetic information contained in each organism carries a lot of information about the past, researchers can study the history of the species by looking at the genes of today’s polar bears.

Analysis of the genetic information in the cell nucleus
Recent studies had suggested that the ancestor of polar bears was a brown bear that lived some 150,000 years ago, in the late Pleistocene. That research was based on DNA from the mitochondria - organelles often called the ‘powerhouses of the cell’. Researchers from the German Biodiversity and Climate Research Centre (BiK-F), together with scientists from Spain, Sweden and the USA, now took an in-depth look at the genetic information contained in the cell nucleus. Frank Hailer, BiK-F, lead author of the study explains: “Instead of the traditional approach of looking at mitochondrial DNA we studied many pieces of nuclear DNA that are each independently inherited. We characterized those pieces, or genetic markers, in multiple polar and brown bear individuals”.

Polar bears had much more time for adaptation and speciation than previously assumed
This genetic survey was well worth the effort - the information obtained from nuclear DNA indicates that polar bears actually evolved in the mid Pleistocene, some 600,000 years ago. This provides much more time for the polar bear ancestors to colonize and adapt to the harsh conditions of the arctic. Based on studies of mitochondrial DNA, polar bears had earlier been considered an example of surprisingly rapid adaptation of a mammal to colder climates. The polar bear’s specific adaptations, including its black skin, white fur, and fur-covered feet now seem less surprising. “In fact, the polar bear genome harbours a lot of distinct genetic information”, says Hailer, “which makes a lot of sense, given all the unique adaptations in polar bears”.

Maternally inherited (mitochondrial) DNA was showing a biased picture
Previous studies of mitochondrial DNA had indicated that polar bears are much younger as a species. The authors of the new paper in “Science” explain this apparent discrepancy with past events of hybridization between polar and brown bears - a process recently observed in the Canadian arctic. After their initial speciation, polar bears and brown bears came into contact again, maybe due to past climatic fluctuations. The mitochondrial DNA found in polar bears today was probably inherited from a brown bear female that hybridized with polar bears at some point in the late Pleistocene. It appears that much of the nuclear genome remained unaffected by hybridization, so polar bears retained their genetic distinctiveness. “Each part of the genome tells its own story. In our study we analysed nuclear DNA that is inherited from both parents. It provides a more detailed and accurate picture of the evolutionary history of a species than mitochondrial DNA that is inherited only from the mother”, says Axel Janke, BiK-F, senior author on the study who also headed the recent sequencing of the brown bear genome. He goes on to say: “Inferring a species’ evolutionary history based on mitochondrial DNA alone is like solving a puzzle with only a few of the many available pieces. You need to study many genetic markers (loci) to put together the full picture.”
Genome carries evidence of past climate fluctuations
The new genetic data indicate that polar bears went through tough times over the course of their 600,000 year-old evolutionary history. Polar bears show much less genetic diversity than brown bear. This is probably due to dramatic reductions in population size in the past. Maybe those times coincided with phases of climatic warming. Whether polar bears will be able to survive the current phase of sea ice melting is not clear. Firstly, human impacts are accelerating the rate of climate change, and the arctic could reach higher temperatures than in previous interglacial warm phases. In addition, numerous human-related issues are threatening the polar bear today. Polar bears colonizing coastal regions due to sea ice melting frequently encounter human habitat, and many bears are killed. Besides persecution, polar bears are also facing other - evolutionarily novel - threats, including pollution by persistent chemicals in the food chain. “If we were to lose polar bears in our era, we would have to ask ourselves what role we played in pushing them over the edge. They clearly were able to survive previous warm phases”, Hailer concludes upon the wider implications of the study.

The authors of the study are:
Frank Hailer (lead author), Verena E. Kutschera, Björn M. Hallström, Denise Klassert, Axel Janke (senior author) -- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany. Jennifer A. Leonard -- Doñana Biological Station - CSIC, Seville, Spain. Steven R. Fain -- US Fish and Wildlife Service, Forensics lab, Ashland, OR, USA. Ulfur Arnason -- Lund University, Lund, Sweden.

Paper:
Hailer, F. et al. (2012). Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage. Science. DOI: 10.1126/science.1216424

For further information please contact:

Frank Hailer, Ph.D. (lead author)
LOEWE Biodiversity and Climate Research Centre (BiK-F)
phone +49 69 798 24733
frank.hailer@senckenberg.de

Prof. Axel Janke
LOEWE Biodiversity and Climate Research Centre (BiK-F) and Goethe University Frankfurt am Main
phone +49 69 7542 1842
axel.janke@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F), Pressereferentin
phone +49 69 7542 1838
sabine.wendler@senckenberg.de

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

Sabine Wendler | Senckenberg
Further information:
http://www.bik-f.de
http://www.senckenberg.de

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>