Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar Bear Evolution Tracked Climate Change, Study Suggests

25.07.2012
An analysis of newly sequenced polar bear genomes is providing important clues about the species' evolution, suggesting that climate change and genetic exchange with brown bears helped create the polar bear as we know it today.

The international study, led by the Pennsylvania State University and the University at Buffalo, found evidence that the size of the polar bear population fluctuated with key climatic events over the past million years, growing during periods of cooling and shrinking in warmer times.

The research also suggests that while polar bears evolved into a distinct species as many as 4-5 million years ago, the animals may have interbred with brown bears until much more recently.

These intimate relations may be tied to changes in the Earth's climate, with the retreat of glaciers bringing the two species into greater contact as their ranges overlapped, said Charlotte Lindqvist, the study's senior author and an assistant professor of biological sciences at UB.

"Maybe we're seeing a hint that in really warm times, polar bears changed their life style and came into contact, and indeed interbred, with brown bears," said Stephan Schuster, co-lead author, a professor of biochemistry and molecular biology at Penn State, and a research scientist at Nanyang Technological University in Singapore.

The findings will be published online in the early edition of the Proceedings of the National Academy of Sciences on July 23. The study is the most extensive analysis to date of polar bear DNA, scientists say. The research team, representing 13 institutions in the U.S., Canada, Europe and Asia, as well as Mexico's Laboratorio Nacional de Genomica para la Biodiversidad (Langebio), sequenced and analyzed the nuclear genomes of 28 different bears, with many DNA samples provided by the U.S. Geological Survey and the Norwegian Polar Institute.

"We generated a first-rate set of data, including deep sequence coverage for the entire genomes of a polar bear, three brown bears and a black bear, plus lower coverage of 23 additional polar bears, including a 120,000-year-old individual; very few vertebrate species have such comprehensive genomic resources available," Schuster said. Using this vast amount of data, the scientists discovered that polar bears are actually an older species than previously thought -- indeed, far more ancient than suggested by a recent study that placed the species' age at 600,000 years old. That analysis looked only at small segments of DNA.

"We showed, based on a consideration of the entire DNA sequence, that earlier inferences were entirely misleading," said study co-lead author Webb Miller, a Penn State professor of biology and computer science and engineering. "Rather than polar bears splitting from brown bears a few hundred thousand years ago, we estimate that the split occurred 4-5 million years ago."

"This means polar bears definitely persisted through warming periods during Earth's history," UB’s Lindqvist said. She cautions, however, that the species' endurance over several million years doesn't guarantee its future survival.

To model historical populations of the polar bear, the scientists used computer simulations to analyze a deeply sequenced polar bear genome.

"This is the first time we can see, from their genes, how the population history of polar bears tracked Earth's climate history," Lindqvist said. "We see an increase in polar bears at the end of the Early Pleistocene as the Earth became much colder, and a continuous decline in the size of the population during warmer times.

“We also found, perhaps unsurprisingly, that polar bears occur in much smaller numbers today than during prehistory," Lindqvist continued. "They have indeed lost a lot of their past genetic diversity, and because of this, they are very likely more sensitive to climate change threats today."

Discrepancies between the estimated age of polar bears in the new study and past studies could be explained by interbreeding between polar bears and brown bears since the species split from each other.

The new analysis uncovered more genetic similarities than previously known between polar bears and ABC brown bears, an isolated group from southeastern Alaska -- suggesting that these animals have exchanged genes since becoming separate species.

"The ABC brown bears' mitochondrial sequences are much more like polar bears' than like other brown bears'," Miller said. "This made us wonder what other parts of their genomes are 'polar-bear-like.' We mapped such regions, which constitute 5 to 10 percent of their total DNA, onto the genomes of two ABC brown bears. As such, brown/polar bear hybridization, which has been observed recently in Arctic Canada, has undoubtedly contributed to shaping the modern polar bear's evolutionary story."

This intermingling between species is just one interesting finding emerging from the enormous trove of data that the PNAS study produced. Another question that the research is beginning to address: What makes a polar bear a polar bear?

Polar bears have genetic differences from brown bears that let them survive in an Arctic climate with very different diets, and the new study identified genes that may be responsible for traits such as polar bears' pigmentation and the high fat content of their milk.

This study received financial support from Penn State University, the College of Arts and Sciences at the University at Buffalo, U.S. Geological Survey's Changing Arctic Ecosystem Initiative, U.S. Fish and Wildlife Service, Ontario Ministry of Natural Resources in Canada, Alaska Department of Fish and Game, the National Institutes of Health and the National Science Foundation.

CONTACTS
Charlotte Lindqvist: cl243@buffalo.edu, (+1) 510-388-1831 or (+1) 716-645-4986
Webb Miller: webb@bx.psu.edu, office (+1) 814-865-4551 mobile (+1) 814-234-6289
Stephan Schuster: scs@bx.psu.edu, mobile after 23 July (+1) 814-441-3513
Charlotte Hsu (PIO at UB): chsu22@buffalo.edu, (+1) 716-645-4655 or (+1) 510-388-1831

Barbara Kennedy (PIO at Penn State): science@psu.edu, (+1) 814-863-4682

Charlotte Lindqvist | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>