Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What if we used poetry to teach computers to speak better?

18.11.2010
McGill linguist's findings show how languages differ in their use of emphasis
This release is available in French.

A better understanding of how we use acoustic cues to stress new information and put old information in the background may help computer programmers produce more realistic-sounding speech.

Dr. Michael Wagner, a researcher in McGill's Department of Linguistics, has compared the way French- and English-speakers evaluate poetry, as a way of finding evidence for a systematic difference in how the two languages use these cues. "Voice synthesis has become quite impressive in terms of the pronunciation of individual words," Wagner explained.

"But when a computer 'speaks,' whole sentences still sound artificial because of the complicated way we put emphasis on parts of them, depending on context and what we want to get across."

A first step to understanding this complexity is to gain better knowledge of how we decide where to put emphasis. This is where poetry comes into play. Wagner has looked at prosody, which means the rhythm, stress and intonation of speech. Poetry relies heavily on prosody, and by making a comparison between languages, he is able to uncover how prosody functions differently in English and French.

Working with Katherine McCurdy at Harvard University, Wagner recently published research that examined the use of identical rhymes in each language. "These are rhymes in which the stressed syllables do not just rhyme, but are identical, such as write/right or attire/retire," Wagner explained. "It is commonly used in French poetry, while in English poetry it is considered to be unconventional and even unacceptable." Wagner gave the following example from a book by John Hollander:

The weakest way in which two words can chime
Is with the most expected kind of rhyme —
(If it's the only rhyme that you can write,
A homophone will never sound quite right.)
The study shows that identical rhymes fit into a general pattern that also applies outside of poetry: even when repeated words differ in meaning and merely sound the same, the repeated information should be acoustically reduced, otherwise it sounds distinctly odd. "It's sort of a bug of the way English uses prosody," Wagner said, "but one that hardly ever creates a problem, because it occurs so rarely in natural speech." Wagner is now working on a model that makes better predictions about where emphasis should fall in a sentence given the discourse context. His findings were published in the journal Cognition and received funding Quebec's Fonds de recherche sur la société et la culture and a Canada Research Chair in Speech and Language Processing grant.

William Raillant-Clark | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>