Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Playing with building blocks of creativity help children with autism

30.11.2010
Children improve creative skills with teaching and positive reinforcement

In an attempt to help children with autism learn the building blocks of creativity, researchers at the University of Rochester Medical Center (URMC) tapped a toy box staple for help – legos. By building lego structures in new and unique ways, children with autism spectrum disorders (ASD) learned to use creativity, an important skill that they had seen as very challenging prior to the study.

"In every day life we need to be able to respond to new situations," said Deborah A. Napolitano, Ph.D., BCBA-D., the study's principal investigator and assistant professor of Pediatrics at URMC's Golisano Children's Hospital. "If a child has only a rote set of skills, it's hard to be successful."

Many children with ASD can become frustrated and uncomfortable when asked to break out of repetitive activities and create something new. Using Applied Behavior Analysis (ABA), the science of figuring out how to target and systematically change a specific behavior, the study's researchers succeeded in teaching all six children with ASD in the study to play with legos in a more creative way. The study's findings have been published in the Journal of Applied Behavioral Analysis. The children, who had wanted to create the same 24-block lego structure over and over again at the start of the study, began venturing out of their comfort zones to create new structures with different color patterns or that were shaped differently.

Snapping a yellow lego onto a blue one when only red blocks had touched blue blocks in the previous structure, for instance, was a big step in helping a study participant with ASD cope with new situations encountered in everyday life, such as learning to say hello when someone they know but were not expecting to see greets them.

"We really can teach kids just about anything as long as it's systematic," said Napolitano.

By the end of the study, all six participants succeeded in making changes to every lego structure they worked on. The study's participants were between the ages of 6 and 10 and five of the six had moderate problems with restricted or sameness behavior, according to a behavior scale assessment that each participants' parent or teacher completed. The one-on-one sessions with building blocks took place at the participants' schools in rooms with minimal distractions. Participants' names were changed in the study.

As each child began building with 24 legos, the instructor praised the child with a "good job" from time to time, to get baseline data and decide whether the child seemed inclined to change the color pattern of the legos or the structure of the legos. After acquiring baseline data about the children's preferences (like changing legos' color patterns versus legos' structural patterns) researchers began with the first intervention phase.

The first phase of the study consisted of a set of sessions that took place over several months. An instructor asked a child to build something new at the beginning of each session. If a child seemed confused about what he or she was being asked to do, the instructor modeled how to build something different and then prompted the child to build something different. If a child understood and succeeded in building something new, by experimenting with color patterns or lego structures, he or she was rewarded with a small prize, such as playing with a favored toy.

In the next phase, the instructor asked the children to build something new with wooden blocks, rather than the plastic lego blocks they had grown accustomed to, to see whether they could apply their new skills to a slightly different situation from the one they had learned in. Then the instructor gave the children legos again, but this time they didn't receive teaching sessions and were rewarded only with a "good job" and not a small prize, like in the first phase. The instructor wanted to see whether the children would still experiment with legos. In the last phase, the children were once again rewarded for varying their lego structures.

A few months later, researchers followed up with the children and found that they were all still able to create new structures in varying colors or shapes.

"The study's findings could pave the way for new studies testing interventions that attempt to improve a wide variety of social skills and behaviors among people with ASD," said Napolitano. "With positive reinforcement and teaching sessions, such tasks as engaging in novel conversations, posing new questions and creating new ways to play could be within reach for children with ASD."

Katie Sauer | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>