Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plastics used in some medical devices break down in a previously unrecognized way

06.12.2012
Scientists have discovered a previously unrecognized way that degradation can occur in silicone-urethane plastics that are often considered for use in medical devices.

Their study, published in ACS' journal Macromolecules, could have implications for device manufacturers considering use of these plastics in the design of some implantable devices, including cardiac defibrillation leads.

Kimberly Chaffin, Marc Hillmyer, Frank Bates and colleagues explain that some implanted biomedical devices, such as pacemakers and defibrillators, have parts made of a plastic consisting of polyurethane and silicone. While these materials have been extensively studied for failure due to interaction with oxygen, no published study has looked at interaction with water as a potential failure mechanism in this class of materials. In a cardiac lead application, these materials may be used as a coating on the electrical wires or "leads" that carry electric current from the battery in the device to the heart.

Surgeons implant pacemakers in 600,000 people worldwide and defibrillators in 100,000 people in the United States each year. Since these implants must function reliably for years, the scientists wanted to determine whether the plastic material was suitable for long-term implants.

Their laboratory tests, including accelerated aging of the materials under conditions that simulated the inside of the human body, found indications that the material begins to break down within 3-6 years. "By making the conclusions of this novel, scientific research public in a respected peer-reviewed journal, device manufacturers may now consider these important findings in their device designs," says Chaffin, distinguished scientist and lead author of the manuscript.

The authors acknowledge the Characterization Facility in the College of Science and Engineering at the University of Minnesota, which receives partial support from the National Science Foundation and the Materials Research Science and Engineering Center at the University of Minnesota.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>