Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using plants against soils contaminated with arsenic

Two essential genes that control the accumulation and detoxification of arsenic in plant cells have been identified. This discovery is the fruit of an international collaboration involving laboratories in Switzerland, South Korea and the United States, with the participation of members of the National Centre of Competence in Research (NCCR) Plant Survival.

The results presented are a promising basis for reducing the accumulation of arsenic in crops from regions in Asia that are polluted by this toxic metalloid, as well as for the cleanup of soils contaminated by heavy metals. The findings are published this week in the prestigious journal PNAS.

The sinking of tubewells in Southeast Asia as well as mining in regions such as China, Thailand, and the United States, are the cause that arsenic concentrations in water often exceed the World Health Organization (WHO) limit of 10 μg/L, the value above which health problems start to occur. Tens of millions of people are exposed to this risk by drinking contaminated water or by ingesting cereal crops cultivated in polluted soils.

A long lasting exposure to this highly toxic metalloid could affect the gastrointestinal transit, the kidneys, the liver, the lungs, the skin and increases the risk of cancer. In Bangladesh, it is estimated that 25 million people drink water that contains more than 50 μg/L of arsenic and that two million of them risk of dying from cancer caused by this toxic substance.

Plants offer a way for toxic metals to enter the food chain. We know, for example, that arsenic is stored within rice grains, which, in regions polluted with this toxic metalloid, constitutes a danger for the population whose diet depends to a great extent on this cereal.

Arsenic or cadmium in soils is transported to plant cells and stored in compartments called vacuoles. Within the cell, the translocation of arsenic and its storage in vacuoles is ensured by a category of peptides – the phytochelatins – that bind to the toxic metalloid, and are transported into the vacuole for detoxification, similar to hooking up a trailer to a truck. In terms of the process, it is the “truck and trailer” complex that is stored in the vacuole.

“By identifying the genes responsible for the vacuolar phytochelatin transport and storage, we have found the missing link that the scientific community searched for the past 25 years”, explains Enrico Martinoia, a professor in plant physiology at the University of Zurich. The experiments carried out on the model plant Arabidopsis can easily be adapted to other plants such as rice.

Enrico Martinoia is one of the directors of this research that includes the Korean professor Youngsook Lee from the Pohang University of Science and Technology (POSTECH) and Julian Schroeder, biology professor at the University of California, San Diego (UCSD). Along with Stefan Hörtensteiner, also from the University of Zurich, and Doris Rentsch from the University of Bern, he is one of the three members of the NCCR Plant Survival who participated in this study which was published in PNAS.

Controlling these genes will make it possible to develop plants capable of preventing the transfer of toxic metals and metalloids from the roots to the leaves and grains thereby limiting the entry of arsenic into the food chain. “By focusing on these genes, states Youngsook Lee, we could avoid the accumulation of these heavy metals in edible portions of the plant such as grains or fruits.”

At the same time, researchers have discovered a way to produce plants capable of accumulating a greater amount of toxic metals which consequently can be used to clean up contaminated soils. These plants would then be burned in blast furnaces in order to eliminate the toxic elements.

Won-Yong Song, Jiyoung Park, David G. Mendoza-Cózatl, Marianne Suter-Grotemeyer, Donghwan Shim, Stefan Hörtensteiner, Markus Geisler, Barbara Weder, Philip A. Rea, Doris Rentsch, Julian I. Schroeder, Youngsook Lee, Enrico Martinoia: Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters, in: PNAS, Doi: 10.1073/pnas.1013964107
Prof. Enrico Martinoia
University of Zurich
Tel. : +41 44 634 8222

Beat Müller | idw
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>