Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When plants attract bugs, it may be their own fault

18.05.2010
If you're debating about what impatiens to plant in your yard, a recent study at the University of Illinois suggests that you go with Cajun Carmine, that is if you want fewer insects in your garden. Why some varieties of the popular bedding plant impatiens attract more thrips than others was one of the questions graduate student Katie Yu investigated.

"The fragrances given off by flowers are actually complex compounds known as plant volatiles, some of which cannot be detected by humans," Yu said. "Volatile compounds act as a language that they use to communicate and interact with the surrounding environment. It's a defense mechanism against herbivores and it's a means to attract pollinators. As of today, there have been over 1,000 plant volatiles reported. But, none have yet to be reported in impatiens."

Impatiens, one of the top-selling bedding plants in America, is very durable, relatively easy to grow and has wholesale sales exceeding over $170 million per year. Yu chose two the popular varieties Dazzler White and Cajun Carmine to study their resistance to the Western flower thrips.

Yu's initial research in greenhouses showed that Cajun Carmine had significantly less damage from thrips than Dazzler White. So she set out to prove the reason why, suspecting that impatiens may emit volatiles that attract the thrips.

Thrips are very tiny, sliver-like insects that are native to northwestern North America. They are a worldwide pest, causing problems in field crops and greenhouses. They are attracted to a wide range of host plants including impatiens, fuscia, hibiscus, chrysanthemum, begonias, ivy, petunias, and major food crops. They feed on the plants' leaves and petals and transmit devastating plant viruses.

For her research, Yu used a tiny glass apparatus shaped like the letter "Y." The thrips are inserted one at a time into the base of the Y. When the thrip reaches the junction in the Y, it has the opportunity to choose to continue one way or the other. In this experiment, one of the choices was toward purified air, while the other was toward volatiles from an impatiens plant.

"Because we want to know if the thrips are choosing based on a non-visual cue, the apparatus is contained in a black box so the thrips cannot see if they're going toward the plant or not," Yu said.

In the experiment, thrips chose Dazzler White over the purified air 64 percent of the time. The thrips chose Cajun Carmine only 53 percent of the time. "Because the thrips are blinded to the plants, it's easy to infer that they are responding to the volatile compounds," Yu said. "Thrips did not choose the Cajun Carmine preferentially over the purified air. What this implies is that Cajun Carmine does not produce a volatile attractive to thrips."

Although the percentages don't appear significantly different, Yu said that it is conclusive. "As a control, we also did the Y test with purified air only, and the thrips were choosing one side over the other 50-50. Because the thrips were choosing Cajun Carmine basically 50-50, choosing Dazzler White 64 percent of the time shows they were definitely choosing the plant [Dazzler White] over the purified air."

While preliminary, these findings are exciting to researchers seeking to minimize damage to impatiens in commercial greenhouses.

When specific plant volatiles are identified as attractant or repellents to specific insect pests, these volatiles can then be used as selection factors in plant breeding programs or by producers seeking to limit insect damage," said Yu's U of I advisor Daniel Warnock. "The development of commercially acceptable cultivars of impatiens that are not attractive to or recognized as a food source by western flower thrips will reduce insecticide usage in greenhouses as the thrips will choose to feed elsewhere. Attractant volatiles may also be used as lures to trap insects as a control method. Repellents may be used as a deterrent to feeding if formulated for application on other crops."

Future research to be conducted at the University of Illinois will focus on identifying the presence of volatile compounds in impatiens germplasm lines which show higher levels of resistance to western flower thrips feeding than Cajun Carmine. Once the presence or absence of volatiles are confirmed, researchers plan to begin fractioning the mass volatiles into specific compounds that are candidates for use in reducing insect attractiveness to greenhouse crops.

Funding for the study was provided by the University of Illinois Research Board.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>