Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt study finds 'green' water treatments may not kill bacteria in large building cooling systems

13.12.2010
Pitt Study Suggests Nonchemical Water Treatments Touted As “Green” Fail to Prevent Bacterial Growth in Air-Cooling Systems Found in Hospitals, Large Buildings

Five devices pitched as alternatives to chemical water treatment for water-based air-conditioning systems allowed the same rate of bacterial growth as untreated water, Pitt researchers found in two-year study.

Nonchemical treatment systems are touted as environmentally conscious stand-ins for such chemicals as chlorine when it comes to cleaning the water-based air-conditioning systems found in many large buildings. But a recent study by University of Pittsburgh researchers suggests that this diverse class of water-treatment devices may be ineffective and can allow dangerous bacteria to flourish in the cooling systems of hospitals, commercial offices, and other water-cooled buildings almost as much as they do in untreated water.

The two-year study by a team in Pitt’s Swanson School of Engineering is the first to thoroughly investigate the ability of nonchemical treatment devices (NCDs) to control the growth of bacteria in water-based cooling systems. Of the five NCDs tested, none significantly prevented bacterial growth. On the other hand, the researchers found that standard chlorine treatment controlled these organisms, even after bacteria had been allowed to proliferate.

“Our results suggest that equipment operators, building owners, and engineers should monitor systems that rely on NCDs to control microorganisms,” said coinvestigator Janet Stout, a research associate in the Swanson School’s Department of Civil and Environmental Engineering and director of the Pittsburgh-based Special Pathogens Laboratory. Stout worked with fellow lead investigator Radisav Vidic, chair and William Kepler Whiteford Professor of civil and environmental engineering, and Pitt civil engineering graduate student Scott Duda.

“These cooling systems are energy efficient and, if properly treated, very safe,” Stout continued. “But based on our results, nonchemical devices alone may not be enough to control microbial growth. One possible measure is to add chemical treatment as needed to prevent a potential health hazard.”

The air systems the team investigated work by piping chilled water throughout a building. The water warms as it exchanges temperature with the surrounding air and becomes a hotbed of microorganisms before returning to a central cooling tower to be cleaned and re-chilled.

If the returning water is not thoroughly cleaned, bacteria can spread throughout the system, exposing people within the building to possible infection and hampering the system’s energy efficiency.

The team constructed two scale models of typical cooling towers. One model remained untreated while the other was treated with five commercially available NCDs installed according to the manufacturers’ guidelines. Each device was tested for four weeks. Chlorine was administered three times during the study to demonstrate that an industry-accepted chemical treatment could kill bacteria even in a heavily contaminated system.

The five devices tested represent different classes of NCDs, Vidic said. Pulsed electric-field devices emit electromagnetic energy that, in theory, ruptures bacterial membranes and activates particles that ensnare the bacterium. Electrostatic devices function similarly by producing a constant static field.

Ultrasonic devices pass a mixture of untreated water and high-pressure air through a chamber that purportedly disintegrates the bacterium with sound waves.

For hydrodynamic cavitation devices, two cone-shaped water streams collide to form a vacuum region filled with high-friction bubbles that collide with and presumably deactivate the bacteria. Finally, the team tested a magnetic device, although magnetic NCDs are intended to prevent mineral buildup, not control bacterial growth.

The study was funded by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

University Units
Swanson School of Engineering

Morgan Kelly | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>