Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering study calculates Arctic Ocean nutrient budget

09.04.2013
The first study of its kind to calculate the amount of nutrients entering and leaving the Arctic Ocean has been carried out by scientists based at the National Oceanography Centre, Southampton.

Their results, which are published this month in the Journal of Geophysical Research, show that there is a mismatch between what goes into the Arctic Ocean and what comes out.

This is the first study to look at the transport of dissolved inorganic nutrients nitrate, phosphate and silicate together, all of which are essential for life in the ocean. The study combined measurements of nutrient concentrations with measurements of how much water was transported across the main Arctic gateways – Davis Strait, Fram Strait, the Barents Sea Opening and Bering Strait – in summer 2005.

Growth of the tiny plants at the base of marine food chains, microalgae, in the Arctic Ocean is fuelled by nutrient inputs from the Pacific and Atlantic Oceans, and from rivers around the Arctic Ocean rim. These riverine inputs are increasing as a result of increasing temperatures, because nutrients previously locked up in frozen soils – or 'permafrost' – are being released as the permafrost thaws.

While scientists are trying to understand how this increase in nutrients is influencing the growth of Arctic microalgae, the final fate of the nutrients is also of interest because they may support marine ecosystems elsewhere, carried there by ocean currents.

In the study, the researchers looked at all oceanic inputs and outputs of the three nutrients. They found that the nitrate coming into the Arctic Ocean balanced how much goes out. But for silicate and phosphate, more goes out into the North Atlantic than comes into the Arctic Ocean.

"These findings have important implications," says Dr Sinhué Torres-Valdés of the National Oceanography Centre, lead author of the paper.

"Firstly, the imbalances indicate that the Arctic Ocean is an important source of phosphate and silicate to the North Atlantic. Secondly, while nitrate transports are balanced, in the Arctic large amounts of nitrogen are lost to the atmosphere as nitrogen gas through a process called denitrification."

So where do the extra nutrients come from?

"Data suggest that rivers can provide most of the silicate that is transported to the North Atlantic, which implies that further alterations on Arctic river nutrient loads will have a direct impact on nutrient transports to the Atlantic.

"In the case of nitrate and phosphate, no obvious sources seem to provide enough to offset the imbalance. We are therefore investigating the possibility that the extra nitrate and phosphate comes from dissolved organic matter – the decaying remains of microorganisms in the ocean and decaying remains from soils in river loads.

"We suggest that this work can serve as a baseline for monitoring how nutrient availability varies as the Arctic continues to respond to the changing climate," says Dr Torres-Valdés.

The study, funded by the Natural Environment Research Council as part of the International Polar Year project 'Arctic Synoptic Basin-wide Oceanography', was a collaboration between the National Oceanography Centre, University of Southampton Ocean and Earth Science, Institute of Ocean Sciences Canada, Bedford Institute of Oceanography, Alfred Wegener Institute for Polar and Marine Research, and University of Alaska Fairbanks.

The paper 'Export of nutrients from the Arctic Ocean' was featured in Research Spotlight of EOS Transactions, American Geophysical Union.

Notes for editors

1. Reference: Torres-Valdés, S., T. Tsubouchi, S. Bacon, A. C. Naveira-Garabato, R. Sanders, F. A. McLaughlin, B. Petrie, G. Kattner, K. Azetsu-Scott, and T. E. Whitledge (2013), Export of nutrients from the Arctic Ocean, J. Geophys. Res.: Oceans, 118, doi:10.1002/jgrc.20063

2. Research Spotlight, EOS Transactions, American Geophysical Union highlights exciting new research from AGU journals. The paper was featured in Volume 94, Number 13, 26 March 2013.

3. The photo was taken during one of the expeditions to the Arctic aboard the Russian icebreaker Kapitan Dranitsyn in 2008 as part of the International Polar Year NERC-funded project Arctic Synoptic Basin-wide Oceanography (ASBO). The image shows the back of the icebreaker, which was carving out a circular opening in the ice at a sampling station. Credit Sinhué Torres-Valdés.

4. The National Oceanography Centre (NOC) is the UK's leading institution for integrated coastal and deep ocean research. NOC operates the Royal Research Ships James Cook and Discovery and develops technology for coastal and deep ocean research. Working with its partners NOC provides long-term marine science capability including: sustained ocean observing, mapping and surveying, data management and scientific advice.

5. NOC operates at two sites, Southampton and Liverpool, with the headquarters based in Southampton.

6. Among the resources that NOC provides on behalf of the UK are the British Oceanographic Data Centre (BODC), the Marine Autonomous and Robotic Systems (MARS) facility, the National Tide and Sea Level Facility (NTSLF), the Permanent Service for Mean Sea Level (PSMSL) and British Ocean Sediment Core Research Facility (BOSCORF).

7. The National Oceanography Centre is wholly owned by the Natural Environment Research Council (NERC).

Contact information

Catherine Beswick, National Oceanography Centre

Catherine Beswick | EurekAlert!
Further information:
http://www.noc.ac.uk

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>