Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering research helps to unravel the brain's vision secrets

04.02.2013
A new study led by scientists at the Universities of York and Bradford has identified the two areas of the brain responsible for our perception of orientation and shape.

Using sophisticated imaging equipment at York Neuroimaging Centre (YNiC), the research found that the two neighbouring areas of the cortex -- each about the size of a 5p coin and known as human visual field maps -- process the different types of visual information independently.

The scientists, from the Department of Psychology at York and the Bradford School of Optometry & Vision Science established how the two areas worked by subjecting them to magnetic fields for a short period which disrupted their normal brain activity. The research which is reported in Nature Neuroscience represents an important step forward in understanding how the brain processes visual information.

Attention now switches to a further four areas of the extra-striate cortex which are also responsible for visual function but whose specific individual roles are unknown.

The study was designed by Professor Tony Morland, of York's Department of Psychology and the Hull York Medical School, and Dr Declan McKeefry, of the Bradford School of Optometry and Vision Science at the University of Bradford. It was undertaken as part of a PhD by Edward Silson at York.

Researchers used functional magnetic resonance imaging (fMRI) equipment at YNiC to pinpoint the two brain areas, which they subsequently targeted with magnetic fields that temporarily disrupt neural activity. They found that one area had a specialised and causal role in processing orientation while neural activity in the other underpinned the processing of shape defined by differences in curvature.

Professor Morland said: "Measuring activity across the brain with FMRI can't tell us what causal role different areas play in our perception. It is by disrupting brain function in specific areas that allows the causal role of that area to be assessed.

"Historically, neuropsychologists have found out a lot about the human brain by examining people who have had permanent disruption of certain parts of the brain because of injury to it. Unfortunately, brain damage seldom occurs at the spatial scale that allows the function of small neighbouring areas to be understood. Our approach is to temporarily disrupt brain activity by applying brief magnetic fields. When these fields are applied to one, small area of the brain, we find that orientation tasks are harder, while disrupting activity in this area's nearest neighbour only affected the ability to perceive shapes."

Dr McKeefry added: "The combination of modern brain scanning technology along with magnetic neuro-stimulation techniques provides us with a powerful means by which we can study the workings of the living human brain.

"The results that we report in this paper provide new insights into how the human brain embarks upon the complex task of analysing objects that we see in the world around us.

"Our work demonstrates how processing of different aspects of visual objects, such as orientation and shape, occurs in different brain areas that lie side by side. The ultimate challenge will be to reveal how this information is combined across these and other brain areas and how it ultimately leads to object recognition."

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>