Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pilot study suggests new approach to treat preeclampsia

03.08.2011
Apheresis-based treatment reduces elevated levels of placental factor and may prolong pregnancy

A novel therapy that reduces elevated blood levels of a potentially toxic protein in women with preeclampsia, a dangerous complication of pregnancy, may someday address the therapeutic dilemma posed by the condition – balancing life-threatening risks to the mother with the dangers that early delivery poses to an immature fetus.

In a paper receiving online release in the journal Circulation, a team of U.S. and German researchers report promising results from their pilot study of a filtration technology that reduces reduce excess blood levels of soluble Flt-1, a protein that limits the growth of blood vessels, in women with very preterm preeclampsia.

"Introducing new therapies in pregnancy is uncommon because of the need to avoid extra risks to both the mother and baby," says Ravi Thadhani, MD, MPH, of the Massachusetts General Hospital (MGH) Division of Nephrology, co-corresponding author of the report. "In this paper we show that a disease that affects thousands of women around the world may one day be able to be managed by the therapy we developed. This was a small, proof-of-concept study to see if the therapy is safe and possibly effective; so larger, randomized trials now need to be done."

Affecting 5 to 7 percent of pregnancies, preeclampsia is characterized by high blood pressure, protein in the urine and additional metabolic abnormalities. If symptoms progress, it can lead to kidney or liver failure, brain swelling, seizures and death. Since the only way to halt the process is to deliver the fetus, the earlier in a pregnancy preeclampsia occurs the greater the risk to the baby. Very preterm delivery – before 32 weeks of gestation – has been estimated to increase infant mortality as much as 70 times over full-term delivery at 37 or more weeks. Very preterm babies who do survive may face lifelong complications such as cerebral palsy, so finding an intervention that can safely prolong pregnancy is vitally important.

The underlying cause of preeclampsia is still unknown, but one hypothesis is that factors released into the bloodstream by the placenta damage blood vessels throughout the body. In a 2003 study Ananth Karumanchi, MBBS, of the Beth Israel-Deaconess Medical Center, a co-author of the current study, identified soluble Flt-1 (FMS-like tyrosine kinase 1) as a possible factor in preeclampsia. Released by the placenta and other tissues, soluble Flt-1 blocks the vascular growth factor VEGF, which is essential to maintaining healthy blood vessels; and levels of soluble Flt-1 are extremely elevated in women with very preterm preeclampsia. Developing a preeclampsia treatment based on removing a factor like soluble Flt-1 rather than giving a drug that may have side effects of its own presented an attractive strategy.

Thadhani and his colleagues adapted the blood-filtering technologies used in apheresis to develop a method of rapidly removing soluble Flt-1 from the bloodstream. Since a blood test to measure soluble Flt-1 levels is available in Germany, Thadhani collaborated with Thomas Benzing, MD, University of Cologne, co-corresponding author of the Circulation paper, and Holger Stepan, MD, of University Hospital Leipzig, on the pilot clinical study. The first phase was designed to confirm the safety of the treatment and determine whether how long it was administered affected how much soluble Flt-1 was reduced. In five patients with very preterm preeclampsia and elevated soluble Flt-1, levels did drop in response to a single treatment, with a greater decrease associated with longer treatment. There were no major side effects, but because the treatment sessions were brief, no extension of pregnancy was expected or seen.

The researchers then offered three women with very preterm preeclampsia – from 27 to 30 weeks – the opportunity to receive several treatment sessions in an attempt to extend their pregnancies. Two patients, one of them carrying twins, received two treatments; and the third received four. After each treatment session, the patients' soluble Flt-1 levels dropped from 20 to 30 percent for several days and urinary protein levels also dropped. Various factors, including recurrence of preeclampsia symptoms, eventually required premature delivery of the babies; but the pregnancies had been maintained from two to three weeks after hospital admission. A comparison group of patients that received standard monitoring required delivery an average of 3.6 days after admission. While the babies of women receiving the novel treatment needed the type of support typically required for premature infants, they all were discharged from the hospital with few complications.

"There has never been an effective therapy for this condition," says Thadhani, an associate professor of Medicine at Harvard Medical School. "We've been working for over a decade to find ways to extend the baby's time in utero while preventing the rapid acceleration of preeclampsia that can take a mother from feeling fine to a coma in a matter of hours. One of the beauties of an approach based on removing something instead of giving a drug is that it can be carefully controlled and, if necessary, quickly turned off. While this study is too small to allow us to say that our treatment was responsible for extending these patients' pregnancies – that will require a larger, randomized clinical trial – this first step holds promise."

Support for the study includes grants from the Discovery Fund of the MGH Department of Medicine, and from the University of Cologne and Howard Hughes Medical Institute. Thadhani and co-author Karumanchi hold patents related to preeclampsia prediction and the use of angiogenic proteins in preeclampsia, respectively. Additional co-authors of the Circulation paper are Tuelay Kisner, MD, Henning Hagmann, MD, Verena Bossung, MD, Stefanie Noack, RN, Peter Mallmann, MD, Angela Kribs, MD, and Oliver Cornely, MD, University of Cologne; Wiebke Schaarschmidt, MD, Alexander Jank, MD, Clauria Kreyssig, MD, and Tom Lindner, MD, University Hospital Leipzig; Linda Hemphill, MD, MGH Division of Nephrology; and Alan Rigby, PhD, and Santosh Khedhar, PhD, Beth Israel-Deaconess Hospital.

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital (www.massgeneral.org) is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $700 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, reproductive biology, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>