Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pilot study suggests new approach to treat preeclampsia

03.08.2011
Apheresis-based treatment reduces elevated levels of placental factor and may prolong pregnancy

A novel therapy that reduces elevated blood levels of a potentially toxic protein in women with preeclampsia, a dangerous complication of pregnancy, may someday address the therapeutic dilemma posed by the condition – balancing life-threatening risks to the mother with the dangers that early delivery poses to an immature fetus.

In a paper receiving online release in the journal Circulation, a team of U.S. and German researchers report promising results from their pilot study of a filtration technology that reduces reduce excess blood levels of soluble Flt-1, a protein that limits the growth of blood vessels, in women with very preterm preeclampsia.

"Introducing new therapies in pregnancy is uncommon because of the need to avoid extra risks to both the mother and baby," says Ravi Thadhani, MD, MPH, of the Massachusetts General Hospital (MGH) Division of Nephrology, co-corresponding author of the report. "In this paper we show that a disease that affects thousands of women around the world may one day be able to be managed by the therapy we developed. This was a small, proof-of-concept study to see if the therapy is safe and possibly effective; so larger, randomized trials now need to be done."

Affecting 5 to 7 percent of pregnancies, preeclampsia is characterized by high blood pressure, protein in the urine and additional metabolic abnormalities. If symptoms progress, it can lead to kidney or liver failure, brain swelling, seizures and death. Since the only way to halt the process is to deliver the fetus, the earlier in a pregnancy preeclampsia occurs the greater the risk to the baby. Very preterm delivery – before 32 weeks of gestation – has been estimated to increase infant mortality as much as 70 times over full-term delivery at 37 or more weeks. Very preterm babies who do survive may face lifelong complications such as cerebral palsy, so finding an intervention that can safely prolong pregnancy is vitally important.

The underlying cause of preeclampsia is still unknown, but one hypothesis is that factors released into the bloodstream by the placenta damage blood vessels throughout the body. In a 2003 study Ananth Karumanchi, MBBS, of the Beth Israel-Deaconess Medical Center, a co-author of the current study, identified soluble Flt-1 (FMS-like tyrosine kinase 1) as a possible factor in preeclampsia. Released by the placenta and other tissues, soluble Flt-1 blocks the vascular growth factor VEGF, which is essential to maintaining healthy blood vessels; and levels of soluble Flt-1 are extremely elevated in women with very preterm preeclampsia. Developing a preeclampsia treatment based on removing a factor like soluble Flt-1 rather than giving a drug that may have side effects of its own presented an attractive strategy.

Thadhani and his colleagues adapted the blood-filtering technologies used in apheresis to develop a method of rapidly removing soluble Flt-1 from the bloodstream. Since a blood test to measure soluble Flt-1 levels is available in Germany, Thadhani collaborated with Thomas Benzing, MD, University of Cologne, co-corresponding author of the Circulation paper, and Holger Stepan, MD, of University Hospital Leipzig, on the pilot clinical study. The first phase was designed to confirm the safety of the treatment and determine whether how long it was administered affected how much soluble Flt-1 was reduced. In five patients with very preterm preeclampsia and elevated soluble Flt-1, levels did drop in response to a single treatment, with a greater decrease associated with longer treatment. There were no major side effects, but because the treatment sessions were brief, no extension of pregnancy was expected or seen.

The researchers then offered three women with very preterm preeclampsia – from 27 to 30 weeks – the opportunity to receive several treatment sessions in an attempt to extend their pregnancies. Two patients, one of them carrying twins, received two treatments; and the third received four. After each treatment session, the patients' soluble Flt-1 levels dropped from 20 to 30 percent for several days and urinary protein levels also dropped. Various factors, including recurrence of preeclampsia symptoms, eventually required premature delivery of the babies; but the pregnancies had been maintained from two to three weeks after hospital admission. A comparison group of patients that received standard monitoring required delivery an average of 3.6 days after admission. While the babies of women receiving the novel treatment needed the type of support typically required for premature infants, they all were discharged from the hospital with few complications.

"There has never been an effective therapy for this condition," says Thadhani, an associate professor of Medicine at Harvard Medical School. "We've been working for over a decade to find ways to extend the baby's time in utero while preventing the rapid acceleration of preeclampsia that can take a mother from feeling fine to a coma in a matter of hours. One of the beauties of an approach based on removing something instead of giving a drug is that it can be carefully controlled and, if necessary, quickly turned off. While this study is too small to allow us to say that our treatment was responsible for extending these patients' pregnancies – that will require a larger, randomized clinical trial – this first step holds promise."

Support for the study includes grants from the Discovery Fund of the MGH Department of Medicine, and from the University of Cologne and Howard Hughes Medical Institute. Thadhani and co-author Karumanchi hold patents related to preeclampsia prediction and the use of angiogenic proteins in preeclampsia, respectively. Additional co-authors of the Circulation paper are Tuelay Kisner, MD, Henning Hagmann, MD, Verena Bossung, MD, Stefanie Noack, RN, Peter Mallmann, MD, Angela Kribs, MD, and Oliver Cornely, MD, University of Cologne; Wiebke Schaarschmidt, MD, Alexander Jank, MD, Clauria Kreyssig, MD, and Tom Lindner, MD, University Hospital Leipzig; Linda Hemphill, MD, MGH Division of Nephrology; and Alan Rigby, PhD, and Santosh Khedhar, PhD, Beth Israel-Deaconess Hospital.

Celebrating the 200th anniversary of its founding in 1811, Massachusetts General Hospital (www.massgeneral.org) is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of nearly $700 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, reproductive biology, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>