Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pilot clinical study into iPS cell therapy for eye disease starts in Japan

31.07.2013
RIKEN is pleased to announce the launch of a pilot study to assess the safety and feasibility of the transplantation of autologous induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cell sheets in patients with exudative (wet-type) age-related macular degeneration

This study, led by Masayo Takahashi M.D., Ph. D. of the Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, and conducted in collaboration with the Institute for Biomedical Research and Innovation with support from the Kobe City Medical Center General Hospital, has been approved to proceed following review by the Ministry of Health, Labour and Welfare and is scheduled to open patient recruitment on August 1, 2013.

Age-related macular degeneration is the most common cause of visual impairment in the elderly, and affects up to 1% of people over 50 years of age in Japan. Wet-type AMD is characterized by progressive damage to the retinal pigment epithelium, a protective layer of non-neural cells located adjacent to the photoreceptors at the back of the eye, due to leakage caused by neovascularization.

Currently available drug treatments for this disease focus on inhibiting neovascularization, but do not repair damage that may have already occurred prior to administration. A number of previous studies have tested the use of RPE cells from various sources, such as fetal tissue or unaffected parts of the RPE, for transplantation but have been complicated by problems of immune rejection or the need for invasive harvesting procedures.

The protocol for Takahashi’s new pilot study involves the establishment of autologous iPSCs from each of the research participants, which will then be differentiated into RPE using a novel technology that allows these epithelial cells to be transplanted in monolayer cell sheets without the use of synthetic scaffolds or matrices. The cell sheets will be shaped into 1.3 × 3 mm grafts and transplanted into the affected site of a single eye, following excision of the damaged RPE and neovascular tissues.

Transplant sites will be monitored closely for functional integration
and potential adverse reactions for an initial intensive observation
period of one year, and subsequent follow-up observation for three
years. Production and validation of the autologous iPSCs and subsequent RPE cell sheets will take approximately 10 months, and will be conducted at a certified clinical-grade cell processing center. The initial three transplants will be conducted at intervals of at least eight weeks; the following three will be performed after a preliminary safety evaluation period.
This pilot study follows on extensive preclinical safety and feasibility
testing, including evaluations of cell morphology, physiologic activity,
gene expression, immunogenicity, and tumorigenesis in rodent and
non-human primate models. The results of these preclinical studies have been submitted for publication in a peer-reviewed journal.
A website describing the research protocol and other details of this
pilot study will be launched by RIKEN and the IBRI to promote public
awareness and understanding of this research program.
Media enquiries should be directed to ips-amd@cdb.riken.jp
Alternatively please contact:
Juliette Savin
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225
email: pr@riken.jp
About RIKEN
RIKEN is Japan’s flagship research institute devoted to basic and
applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN’s advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.

Website: www.riken.jp/en/ Find us on Twitter at @riken_en

About the Center for Developmental Biology

The RIKEN Center for Developmental Biology (CDB) was launched in April 2000 to advance research in the fields of animal development and regeneration and contribute to areas of clinical medicine that can benefit from such research. The CDB is dedicated to developing a better understanding of fundamental processes of animal development at the molecular and cell biological level, the more complex phenomena involved in organogenesis as well as the biology of stem cells and regeneration. By elucidating these processes researchers working at CDB hope to improve the effectiveness of regenerative medicine, for the benefit of society.

gro-pr | Research asia research news
Further information:
http://www.cdb.riken.jp/en/index.html

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>