Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting the picture - Decisions are made in the forebrain

27.05.2011
Researchers at the Bernstein Center Berlin, Charité – Universitätsmedizin Berlin and Freie Universität Berlin have for the first time clearly demonstrated that the forebrain is causally involved in human decision-making.

In the journal Current Biology* they report that subjects were less accurate and took significantly longer to make decisions when a certain region of the forebrain was inhibited by so-called transcranial magnetic stimulation (TMS). Using a computer model, the scientists can also explain how the decision-making process was affected by the intervention.

Without us even noticing our brain is constantly making decisions. Does the picture show a man or a woman? Even when the image is blurred, our brain usually interprets the information correctly. Scientists around Felix Blankenburg, research assistant at Bernstein Center Berlin and Charité, and Hauke Heekeren at the Freie Universität Berlin investigate how this works.

For quite some time, experts have suspected that a certain forebrain region - the dorsolateral prefrontal cortex - is involved in decisions. Using TMS, the researchers switched this area off for a short period of time. Then, they asked their twelve subjects to decide as fast as possible whether a noisy stimulus on a screen contains a car or a face. The result: when the brain region was inhibited, people hesitated longer and chose the wrong alternative more often. The image quality did not influence the effect.

Thus, the researchers showed for the first time that the human dorsolateral prefrontal cortex has a causal influence on decision making. “With this study, we were able to close the gap between the state of knowledge acquired in animals and in humans in this respect. We are now a step closer to understanding the brain regions involved in decision making,” says Blankenburg. “However, this doesn’t mean that we know how the different areas interact yet.”

A computer model supported the scientists’ reasoning. It allows separating factors such as visual processing of sensory stimuli from decision-making. The model also captures how decisions are made under different conditions, such as in poor-quality images. “The combination of theoretical models with TMS can help ascribe causal and functional role to brain areas involved in various cognitive processes. This model gives us new opportunities to estimate parameters from our behavioral data that play a role in decision-making,” explains Marios Philiastides, first author of the study.

The drift-diffusion model suggests that the process of decision-making is not linear. Its behaviour is comparable with a stock price. Random effects result in a fluctuation of the course. A broker establishes an upper and lower limit for selling the stock. The more positive or negative information is known about the company, the stronger the price moves in one direction. The process of collecting information for a decision-making is comparable to the fluctuating stock price, while the decision itself can be compared with a break of boundaries.

The model explains both why we have different response times and why sometimes we decide wrong. Nowadays, the model is used in many aspects, including the investigation of attention and memory. The findings could also be used to develop new therapies for diseases such as depression or obsessive-compulsive disorder, in which decision making is impaired.

*Original publication:
Philiastides et al., Causal Role of Dorsolateral Prefrontal Cortex in Human Perceptual Decision Making, Current Biology (2011), doi:10.1016/j.cub.2011.04.034

http://www.cell.com/current-biology/abstract/S0960-9822%2811%2900476-3

For further Information please contact:
Dr. Felix Blankenburg
Department of Neurology, Charité and Bernstein
Center for Computational Neuroscience
Philippstr. 13, 10115 Berlin
Tel: +49 (0) 30 2093 6775
E-Mail: felix.blankenburg@charite.de
Weitere Informationen:
http://www.bccn-berlin.de Bernstein Center Berlin
http://www.nncn.de National Network Computational Neuroscience
http://www.charite.de Charité-Universitätsmedizin Berlin
http://www.fu-berlin.de Freie Universität Berlin

Johannes Faber | idw
Further information:
http://www.bccn-berlin.de
http://www.cell.com/current-biology/abstract/S0960-9822%2811%2900476-3

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>