Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting the picture - Decisions are made in the forebrain

27.05.2011
Researchers at the Bernstein Center Berlin, Charité – Universitätsmedizin Berlin and Freie Universität Berlin have for the first time clearly demonstrated that the forebrain is causally involved in human decision-making.

In the journal Current Biology* they report that subjects were less accurate and took significantly longer to make decisions when a certain region of the forebrain was inhibited by so-called transcranial magnetic stimulation (TMS). Using a computer model, the scientists can also explain how the decision-making process was affected by the intervention.

Without us even noticing our brain is constantly making decisions. Does the picture show a man or a woman? Even when the image is blurred, our brain usually interprets the information correctly. Scientists around Felix Blankenburg, research assistant at Bernstein Center Berlin and Charité, and Hauke Heekeren at the Freie Universität Berlin investigate how this works.

For quite some time, experts have suspected that a certain forebrain region - the dorsolateral prefrontal cortex - is involved in decisions. Using TMS, the researchers switched this area off for a short period of time. Then, they asked their twelve subjects to decide as fast as possible whether a noisy stimulus on a screen contains a car or a face. The result: when the brain region was inhibited, people hesitated longer and chose the wrong alternative more often. The image quality did not influence the effect.

Thus, the researchers showed for the first time that the human dorsolateral prefrontal cortex has a causal influence on decision making. “With this study, we were able to close the gap between the state of knowledge acquired in animals and in humans in this respect. We are now a step closer to understanding the brain regions involved in decision making,” says Blankenburg. “However, this doesn’t mean that we know how the different areas interact yet.”

A computer model supported the scientists’ reasoning. It allows separating factors such as visual processing of sensory stimuli from decision-making. The model also captures how decisions are made under different conditions, such as in poor-quality images. “The combination of theoretical models with TMS can help ascribe causal and functional role to brain areas involved in various cognitive processes. This model gives us new opportunities to estimate parameters from our behavioral data that play a role in decision-making,” explains Marios Philiastides, first author of the study.

The drift-diffusion model suggests that the process of decision-making is not linear. Its behaviour is comparable with a stock price. Random effects result in a fluctuation of the course. A broker establishes an upper and lower limit for selling the stock. The more positive or negative information is known about the company, the stronger the price moves in one direction. The process of collecting information for a decision-making is comparable to the fluctuating stock price, while the decision itself can be compared with a break of boundaries.

The model explains both why we have different response times and why sometimes we decide wrong. Nowadays, the model is used in many aspects, including the investigation of attention and memory. The findings could also be used to develop new therapies for diseases such as depression or obsessive-compulsive disorder, in which decision making is impaired.

*Original publication:
Philiastides et al., Causal Role of Dorsolateral Prefrontal Cortex in Human Perceptual Decision Making, Current Biology (2011), doi:10.1016/j.cub.2011.04.034

http://www.cell.com/current-biology/abstract/S0960-9822%2811%2900476-3

For further Information please contact:
Dr. Felix Blankenburg
Department of Neurology, Charité and Bernstein
Center for Computational Neuroscience
Philippstr. 13, 10115 Berlin
Tel: +49 (0) 30 2093 6775
E-Mail: felix.blankenburg@charite.de
Weitere Informationen:
http://www.bccn-berlin.de Bernstein Center Berlin
http://www.nncn.de National Network Computational Neuroscience
http://www.charite.de Charité-Universitätsmedizin Berlin
http://www.fu-berlin.de Freie Universität Berlin

Johannes Faber | idw
Further information:
http://www.bccn-berlin.de
http://www.cell.com/current-biology/abstract/S0960-9822%2811%2900476-3

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>