Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did phosphorus trigger complex evolution -- and blue skies?

11.05.2010
The evolution of complex life forms may have gotten a jump start billions of years ago, when geologic events operating over millions of years caused large quantities of phosphorus to wash into the oceans.

According to this model, proposed in a new paper by Dominic Papineau of the Carnegie Institution for Science, the higher levels of phosphorus would have caused vast algal blooms, pumping extra oxygen into the environment which allowed larger, more complex types of organisms to thrive.

"Phosphate rocks formed only sporadically during geologic history," says Papineau, a researcher at Carnegie's Geophysical Laboratory, "and it is striking that their occurrences coincided with major global biogeochemical changes as well as significant leaps in biological evolution."

In his study, published in the journal Astrobiology, Papineau focused on the phosphate deposits that formed during an interval of geologic time known as the Proterozoic, from 2.5 billion years ago to about 540 million years ago. "This time period is very critical in the history of the Earth, because there are several independent lines of evidence that show that oxygen really increased during its beginning and end," says Papineau. The previous atmosphere was possibly methane-rich, which would have given the sky an orangish color. "So this is the time that the sky literally began to become blue."

During the Proterozoic, oxygen levels in the atmosphere rose in two phases: first ranging from 2.5 to 2 billion years ago, called the Great Oxidation Event, when atmospheric oxygen rose from trace amounts to about 10% of the present-day value. Single-celled organisms grew larger during this time and acquired cell structures called mitochondria, the so-called "powerhouses" of cells, which burn oxygen to yield energy. The second phase of oxygen rise occurred between about 1 billion and 540 million years ago and brought oxygen levels to near present levels. This time intervals is marked by the earliest fossils of multi-celled organisms and climaxed with the spectacular increase of fossil diversity known as the "Cambrian Explosion."

Papineau found that these phases of atmospheric change corresponded with abundant phosphate deposits, as well as evidence for continental rifting and extensive glacial deposits. He notes that both rifting and climate changes would have changed patterns of erosion and chemical weathering of the land surface, which would have caused more phosphorous to wash into the oceans. Over geologic timescales the effect on marine life, he says, would have been analogous to that of high-phosphorus fertilizers washed into bodies of water today, such as the Chesapeake Bay, where massive algal blooms have had a widespread impact.

"Today, this is happening very fast and is caused by us," he says, "and the glut of organic matter actually consumes oxygen. But during the Proterozoic this occurred over timescales of hundreds of millions of years and progressively led to an oxygenated atmosphere."

"This increased oxygen no doubt had major consequences for the evolution of complex life. It can be expected that modern changes will also strongly perturb evolution," he adds. "However, new lineages of complex life-forms take millions to tens of millions of years to adapt. In the meantime, we may be facing significant extinctions from the quick changes we are causing."

The research was supported by the Geophysical Laboratory of the Carnegie Institution for Science, Carnegie of Canada, and from the Fonds québécois pour la recherche sur la nature et les technologies (FQRNT), NASA Exobiology and Evolutionary Biology Program, and the NASA Astrobiology Institute through Cooperative Agreement NNA04CC09A.

The Carnegie Institution (www.carnegiescience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Founded in 1998, the NASA Astrobiology Institute (NAI) is a partnership between NASA, 14 U.S. teams, and six international consortia. NAI's goals are to promote, conduct, and lead interdisciplinary astrobiology research, train a new generation of astrobiology researchers, and share the excitement of astrobiology with learners of all ages. http://astrobiology.nasa.gov/nai/

Dominic Papineau | EurekAlert!
Further information:
http://www.ciw.edu
http://astrobiology.nasa.gov/nai/
http://www.carnegiescience.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>