Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Phosphate Sorption Characteristics of European Alpine Soils

Research on phosphate sorption of alpine soils is limited, but European researchers have provided new data regarding the impact alpine soils have on catchments of alpine lakes.

Soil chemistry plays an important role in the composition of surface waters. In areas with limited human activities, properties of catchment soils directly relate to the exported nutrients to surface waters. Phosphate sorption research is common in agricultural and forest soils, but data from alpine areas are limited.

Scientists from the Biology Centre of the Academy of Sciences of the Czech Repbublic, from the Centre for Advanced Studies of Blanes, and from the Forest Sciences Center of Catalonia, have conducted research of the impact European alpine soils have on numerous catchments of alpine lakes.

By comparing phosphate sorption characteristics of soils with different levels of acidification, the scientists determined which soil chemical properties affected phosphate sorption.

The study showed that the sorption of alpine soils from different localities were generally similar, ranging between 9 – 145 mmol kg-1. This data was positively correlated with the sum of concentrations of aluminum and iron oxides.

Aluminum oxide concentration was the most important factor tested, accounting for an average of 67% of the sorption variability from the test sites.

Results also showed that similar concentrations of aluminum and iron oxides are able to more effectively retain phosphate in more acidic areas than in areas with high soil pH. Therefore, different levels of acidification of soils may contribute to lower phosphate concentrations in lakes in more acidified areas, compared to lakes less affected by acidification.

The complete results from this study can be found in the May-June 2011 issue of the Soil Science Society of America Journal.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

Soil Science Society of America Journal,, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. Founded in 1936, SSSA celebrates its 75th Anniversary this year (2011). For more information, visit or follow @SSSA_soils on Twitter.

Sara Uttech | EurekAlert!
Further information:

Further reports about: Alpines Steinschaf SSSA Soil Soil Science iron oxide surface water

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>