Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phosphate Sorption Characteristics of European Alpine Soils

15.06.2011
Research on phosphate sorption of alpine soils is limited, but European researchers have provided new data regarding the impact alpine soils have on catchments of alpine lakes.

Soil chemistry plays an important role in the composition of surface waters. In areas with limited human activities, properties of catchment soils directly relate to the exported nutrients to surface waters. Phosphate sorption research is common in agricultural and forest soils, but data from alpine areas are limited.

Scientists from the Biology Centre of the Academy of Sciences of the Czech Repbublic, from the Centre for Advanced Studies of Blanes, and from the Forest Sciences Center of Catalonia, have conducted research of the impact European alpine soils have on numerous catchments of alpine lakes.

By comparing phosphate sorption characteristics of soils with different levels of acidification, the scientists determined which soil chemical properties affected phosphate sorption.

The study showed that the sorption of alpine soils from different localities were generally similar, ranging between 9 – 145 mmol kg-1. This data was positively correlated with the sum of concentrations of aluminum and iron oxides.

Aluminum oxide concentration was the most important factor tested, accounting for an average of 67% of the sorption variability from the test sites.

Results also showed that similar concentrations of aluminum and iron oxides are able to more effectively retain phosphate in more acidic areas than in areas with high soil pH. Therefore, different levels of acidification of soils may contribute to lower phosphate concentrations in lakes in more acidified areas, compared to lakes less affected by acidification.

The complete results from this study can be found in the May-June 2011 issue of the Soil Science Society of America Journal.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.soils.org/publications/sssaj/articles/75/3/862.

Soil Science Society of America Journal, www.soils.org/publications/sssaj, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. Founded in 1936, SSSA celebrates its 75th Anniversary this year (2011). For more information, visit www.soils.org or follow @SSSA_soils on Twitter.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy,org

Further reports about: Alpines Steinschaf SSSA Soil Soil Science iron oxide surface water

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>