Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Periodontitis Revisited: It’s the Community, Not Single Microorganisms!

06.08.2012
New study published in open access journal PLoS ONE: Community composition of the oral microorganisms influences dental health / detection of just a few oral bacteria is not sufficient to monitor the treatment success of periodontitis patients

There’s a direct correlation between the diversity of your oral microbiome – the up to 700 different species of bacteria that live in your mouth – and the health of your teeth, according to a study from scientists at the University of Münster and Bielefeld University.

Some combination of those bacteria, it’s not clear which ones exactly, are a key component responsible for periodontitis, a disease that weakens the supporting tissues of your teeth and can cause them to loosen and eventually fall out. Periodontitis is one of the most common diseases in the world and half of the people over 40 years old in developed countries have it.

Traditionally the treatment for periodontitis is scaling and root planning, or SRP – a dentist scraping away the plaque from teeth pockets that causes the disease to start. Antibiotics are commonly prescribed as well, though just how well they work is not clear. The goal of the study was to see how bacteria react to treatment. This is the first step toward understanding the true impact treatments are having and eventually developing a prognostic tool to monitor the progression of the disease.

What the team found was that successful treatment, whether from SRP alone or SRP and antibiotics, resulted in a higher diversity of the species of bacteria and their abundance living in the patient’s mouth. Traditionally scientists have tried to monitor the disease by looking at just a few bacteria at a time, which they either grew in petri dishes - an approach dating back to the time of Robert Koch – or detected by molecular means. It’s an approach that study author Dr. Dag Harmsen, a researcher from the Department for Periodontology at the University of Münster, says is ineffective.

“Periodontitis is not caused by individual micro-organisms, you need to look at all the bacteria in the entire oral microbiome and see how the entire population shifts to understand if a treatment is having an effect,” said Harmsen.

Harmsen’s approach of looking at an entire population of organisms is called amplicon metagenomics. It allows researchers to simply sequence the DNA of every organism that is present in a sample and see what the data tells them, rather than approaching the experiment with a thesis that could limit what they can find. These researchers were the first to publish metagenomic research on the Ion PGM™ sequencer, a new sequencing technology that makes metagenomic sequencing faster and more affordable than in the past.

“The biggest challenge with NGS experiments in general is to deal with the huge amount of data generated in the proper way. Here especially it was an endeavor to implement an automated analysis pipeline for such a new technology platform,” explained the first author of the PLoS ONE publication Sebastian Jünemann, a bioinformatician from the Institute for Bioinformatics, Center for Biotechnology, Bielefeld University.

“If the study results are confirmed in further experiments with larger sample size, the detected changes in community profiles and metrics will be a very useful diagnostic prognostic factor for treatment success and certainly be applied soon in routine patient care,“ added Harmsen.

Citation:
Jünemann S, Prior K, Szczepanowski R, Harks I, Ehmke B, Goesmann A, Stoye J, Harmsen D (2012) Bacterial community shift in treated periodontitis patients revealed by Ion Torrent 16S rRNA gene amplicon sequencing. PLoS ONE 7(8): e41606.

doi: 10.1371/journal.pone.0041606

Contact:
Dr. Thomas Bauer
University of Münster, Medical Faculty
Tel.: 0251 / 83-58937
E-mail: thbauer@uni-muenster.de

Juliane Albrecht | idw
Further information:
http://www.uni-muenster.de
http://dx.plos.org/10.1371/journal.pone.0041606

Further reports about: Ionen PLoS One SRP microorganisms oral microbiome periodontitis species of bacteria

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>