Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perceptual Learning Relies on Local Motion Signals to Learn Global Motion

23.09.2009
Researchers have long known of the brain’s ability to learn based on visual motion input, and a recent study has uncovered more insight into where the learning occurs.

The brain first perceives changes in visual input (local motion) in the primary visual cortex. The local motion signals are then integrated in the later visual processing stages and interpreted as global motion in the higher-level processes.

But when subjects in a recent experiment using moving dots were asked to detect global motion (the overall direction of the dots moving together), the results show that their learning relied on more local motion processes (the movement of dots in small areas) than global motion areas.

“We had expected that higher-level processing could be more involved in task-relevant perceptual learning investigated in this study,” said Dr. Shigeaki Nishina who conducted the research in Boston University and now belongs to the Honda Research Institute Japan. “Contrary to the expectation, the result suggested local motion signals are predominantly used for task-relevant perceptual learning of global motion, which was surprising to us.”

Nishina said the results, which appear in the latest issue of Journal of Vision (http://www.journalofvision.org/9/9/15/) show that the improvement in detection of global motion is not due to learning of the global motion but to learning of local motion of the moving dots in the test.

The researchers said the study of perceptual learning can give scientists deeper insight not only about sensory systems but also the whole brain’s adaptable nature.

“This line of study could give a guideline for optimizing human machine interface,” said Nishina. “When we use a new machine, we need to learn how to get information from the machine. In our study, local motion signals were more important for the brain to learn a task based on global motion. This suggests that the optimal information for efficient learning could be different from the visual information that is directly related to the task to be learned.”

In addition, Nishina said the new understanding of where the brain processes task-relevant perceptual learning can lead to further understanding of how a brain makes decisions based on sensory input.

“We expect that our results will help the understanding of decision-making process and constructing a more concrete model of the process,” he said.

The Journal of Vision is an online-only, peer-reviewed, open-access publication devoted to visual function in humans and animals. It is published by the Association for Research in Vision and Ophthalmology. It explores topics such as spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics. JOV is known for hands-on datasets and models that users can manipulate online.

The Association for Research in Vision and Ophthalmology (ARVO) is the largest eye and vision research organization in the world. Members include more than 12,500 eye and vision researchers from over 80 countries. The Association encourages and assists research, training, publication and knowledge-sharing in vision and ophthalmology.

Jessie Williams | Newswise Science News
Further information:
http://www.arvo.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>