Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perceptual Learning Relies on Local Motion Signals to Learn Global Motion

23.09.2009
Researchers have long known of the brain’s ability to learn based on visual motion input, and a recent study has uncovered more insight into where the learning occurs.

The brain first perceives changes in visual input (local motion) in the primary visual cortex. The local motion signals are then integrated in the later visual processing stages and interpreted as global motion in the higher-level processes.

But when subjects in a recent experiment using moving dots were asked to detect global motion (the overall direction of the dots moving together), the results show that their learning relied on more local motion processes (the movement of dots in small areas) than global motion areas.

“We had expected that higher-level processing could be more involved in task-relevant perceptual learning investigated in this study,” said Dr. Shigeaki Nishina who conducted the research in Boston University and now belongs to the Honda Research Institute Japan. “Contrary to the expectation, the result suggested local motion signals are predominantly used for task-relevant perceptual learning of global motion, which was surprising to us.”

Nishina said the results, which appear in the latest issue of Journal of Vision (http://www.journalofvision.org/9/9/15/) show that the improvement in detection of global motion is not due to learning of the global motion but to learning of local motion of the moving dots in the test.

The researchers said the study of perceptual learning can give scientists deeper insight not only about sensory systems but also the whole brain’s adaptable nature.

“This line of study could give a guideline for optimizing human machine interface,” said Nishina. “When we use a new machine, we need to learn how to get information from the machine. In our study, local motion signals were more important for the brain to learn a task based on global motion. This suggests that the optimal information for efficient learning could be different from the visual information that is directly related to the task to be learned.”

In addition, Nishina said the new understanding of where the brain processes task-relevant perceptual learning can lead to further understanding of how a brain makes decisions based on sensory input.

“We expect that our results will help the understanding of decision-making process and constructing a more concrete model of the process,” he said.

The Journal of Vision is an online-only, peer-reviewed, open-access publication devoted to visual function in humans and animals. It is published by the Association for Research in Vision and Ophthalmology. It explores topics such as spatial vision, perception, low vision, color vision and more, spanning the fields of neuroscience, psychology and psychophysics. JOV is known for hands-on datasets and models that users can manipulate online.

The Association for Research in Vision and Ophthalmology (ARVO) is the largest eye and vision research organization in the world. Members include more than 12,500 eye and vision researchers from over 80 countries. The Association encourages and assists research, training, publication and knowledge-sharing in vision and ophthalmology.

Jessie Williams | Newswise Science News
Further information:
http://www.arvo.org

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>