Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People with More Education May Recover Better from Traumatic Brain Injury

24.04.2014

People with more years of education may be better able to recover from a traumatic brain injury, according to a study published in the April 23, 2014, online issue of Neurology®, the medical journal of the American Academy of Neurology.

The study examined people with moderate to severe traumatic brain injuries, most of which were from motor vehicle accidents or falls. All were taken to the emergency department and spent time in the hospital after the injury and also for inpatient rehabilitation. 

“After these types of injuries, some people are disabled for life and are never able to go back to work, while other people who have similar injuries recover fully,” said study author Eric B. Schneider, PhD, of Johns Hopkins School of Medicine in Baltimore, Md., and a member of the American Academy of Neurology. “We understand some factors that lead to these differences, but we can’t explain all of the variation. These results may provide another piece of the puzzle.” 

The cognitive reserve theory is that people with more education have a greater cognitive reserve, or the brain’s ability to maintain function in spite of damage. The concept has emerged for brain disorders such as Alzheimer’s disease, where people with higher levels of education have been shown to have fewer symptoms of the disease than people with less education, even when they have the same amount of damage in the brain from the disease. But few studies have looked at how cognitive reserve may affect traumatic brain injury. 

The study involved 769 people at least 23 years old and who had been followed for at least a year after their injury. Participants were grouped by education level. A total of 185 participants, or 24 percent, did not finish high school; 390, or 51 percent, had 12 to 15 years of education, or had finished high school and some post-secondary education; and 194, or 25 percent, had obtained at least an undergraduate degree, or had 16 or more years of education. 

One year after the injury, 219 of the participants, or 28 percent, had no disability and were able to return to work or school. Only 23 people, or 10 percent, of those with no high school diploma were free of disability, compared to 136, or 31 percent of those with some college education and 76, or 39 percent, of those with a college degree. 

“People with education equal to a college degree were more than seven times more likely to fully recover from their injury than people who did not finish high school,” Schneider said. “And people with some college education were nearly five times more likely to fully recover than those without enough education to earn a high school diploma. We need to learn more about how education helps to protect the brain and how it affects injury and resilience. Exploring these relationships will hopefully help us to identify ways to help people recover better from traumatic brain injury.” 

Collection of the data used for this study was supported by the National Institute on Disability and Rehabilitation Research and the U.S. Department of Education. 

To learn more about traumatic brain injury, please visit www.aan.com/patients.  

The American Academy of Neurology, an association of more than 27,000 neurologists and neuroscience professionals, is dedicated to promoting the highest quality patient-centered neurologic care. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as Alzheimer’s disease, stroke, migraine, multiple sclerosis, brain injury, Parkinson’s disease and epilepsy. 

For more information about the American Academy of Neurology, visit http://www.aan.com

Rachel L. Seroka | American Academy of Neurology

Further reports about: Alzheimer’s Brain Education Neurology Traumatic accidents cognitive disability disorders injuries injury

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>