Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why people with schizophrenia may have trouble reading social cues

Understanding the actions of other people can be difficult for those with schizophrenia. Vanderbilt University researchers have discovered that impairments in a brain area involved in perception of social stimuli may be partly responsible for this difficulty.

“Misunderstanding social situations and interactions are core deficits in schizophrenia,” said Sohee Park, Gertrude Conaway Professor of Psychology and one of the co-authors on this study. “Our findings may help explain the origins of some of the delusions involving perception and thoughts experienced by those with schizophrenia.”

In findings published in the journal PLoS ONE, the researchers found that a particular brain area, the posterior superior temporal sulcus or STS, appears to be implicated in this deficit.

“Using brain imaging together with perceptual testing, we found that a brain area in a neural network involved in perception of social stimuli responds abnormally in individuals with schizophrenia,” said Randolph Blake, Centennial Professor of Psychology and co-author. “We found this brain area fails to distinguish genuine biological motion from highly distorted versions of that motion.”

The study’s lead author, Jejoong Kim, completed the experiments as part of his dissertation under the supervision of Park and Blake in Vanderbilt’s Department of Psychology. Kim is now conducting research in the Department of Brain and Cognitive Sciences at Seoul National University in Korea, where Blake is currently a visiting professor.

“We have found… that people with schizophrenia tend to ‘see’ living things in randomness and this subjective experience is correlated with an increased activity in the (posterior) STS,” the authors wrote. “In the case of biological motion perception, these self-generated, false impressions of meaning can have negative social consequences, in that schizophrenia patients may misconstrue the actions or intentions of other people.”

In their experiments, the researchers compared the performance of people with schizophrenia to that of healthy controls on two visual tasks. One task involved deciding whether or not an animated series of lights depicted the movements of an actor’s body. The second task entailed judging subtle differences in the actions depicted by two similar animations viewed side by side. On both tasks, people with schizophrenia performed less well than the healthy controls.

fMRI used to i.d. brain area
Next, the researchers measured brain activity using functional magnetic resonance imaging (fMRI) while the subjects—healthy controls and schizophrenia patients—performed a version of the side-by-side task. Once again, the individuals with schizophrenia performed worse on the task. The researchers were then able to correlate those performance deficits with the brain activity in each person.

The fMRI results showed strong activation of the posterior portion of the STS in the healthy controls when they were shown biological motion. In the individuals with schizophrenia, STS activity remained relatively constant and high regardless of what was presented to them.

Analysis of the brain activity of the schizophrenia patients also showed high STS activity on trials where they reported seeing biological motion, regardless of whether the stimulus itself was biological or not.

For reasons yet to be discovered, area STS in schizophrenia patients fails to differentiate normal human activity from non-human motion, leading Kim and colleagues to surmise that this abnormal brain activation contributes to the patients’ difficulties reading social cues portrayed by the actions of others.

The research was funded with support from the Brain and Behavior Research Foundation (formerly the National Alliance for Research on Schizophrenia and Depression) and the National Research Foundation of Korea in the Korean Ministry of Education, Science and Technology.

Melanie Moran, (615) 322-NEWS

Melanie Moran | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>