Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


People Mimic Each Other, But We Aren’t Chameleons

It’s easy to pick up on the movements that other people make — scratching your head, crossing your legs. But a new study published in Psychological Science, a journal of the Association for Psychological Science, finds that people only feel the urge to mimic each other when they have the same goal.

It’s common for people to pick up on each other’s movements. “This is the notion that when you’re having a conversation with somebody and you don’t care where your hands are, and the other person scratches their head, you scratch your head,” says Sasha Ondobaka of the Donders Institute for Brain, Cognition and Behaviour at Radboud University Nijmegen in the Netherlands.

He cowrote the paper with Floris P. de Lange, Michael Wiemers, and Harold Bekkering of Radboud and Roger D. Newman-Norlund of the University of South Carolina. This kind of mimicry is well-established, but Ondobaka and his colleagues suspected that what people mimic depends on their goals.

“If you and I both want to drink coffee, it would be good for me to synchronize my movement with yours,” Ondobaka says. “But if you’re going for a walk and I need coffee, it wouldn’t make sense to be coupled on this movement level.”

Ondobaka and his colleagues devised an experiment to see how much of a pull people feel to mimic when they have the same or different goals from someone else. Each participant sat across from an experimenter. They played a sort of card game on a touch screen embedded in the table between. First, two cards appeared in front of the experimenter, who chose either the higher or the lower card. Then two cards appeared in front of the participant. This happened 16 times in a row. For some 16-game series, the participant was told to do the same as the experimenter—to choose the higher (or lower) card. For others, they were told to do the opposite. Participants were told to move as quickly and as accurately as possible.

When the participant was supposed to make the same choice as the experimenter, they moved faster when they were also reaching in the same direction as the experimenter. But when they were told to do the opposite of the experimenter—when they had different goals—they didn’t go any faster when making the same movement as the other person. This means having different goals got in the way of the urge to mimic, Ondobaka says.

The researchers think that people only copy each other’s movements when they’re trying to accomplish the same thing. The rest of the time, actions are more related to your internal goals. “We’re not walking around like chameleons copying everything,” Ondobaka says. If you’re on a busy street with dozens of people in view, you’re not copying everything everybody does—just the ones that have the same goal as you. “If a colleague or a friend is going with you, you will cross the street together.”

For more information about this study, please contact: Sasha Ondobaka at

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Interplay Between Action and Movement Intentions During Social Interaction" and access to other Psychological Science research findings, please contact Divya Menon at 202-293-9300 or

Divya Menon | EurekAlert!
Further information:

Further reports about: Chameleons Psychological Science kind of mimicry mimic movements

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>