Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People Mimic Each Other, But We Aren’t Chameleons

12.01.2012
It’s easy to pick up on the movements that other people make — scratching your head, crossing your legs. But a new study published in Psychological Science, a journal of the Association for Psychological Science, finds that people only feel the urge to mimic each other when they have the same goal.

It’s common for people to pick up on each other’s movements. “This is the notion that when you’re having a conversation with somebody and you don’t care where your hands are, and the other person scratches their head, you scratch your head,” says Sasha Ondobaka of the Donders Institute for Brain, Cognition and Behaviour at Radboud University Nijmegen in the Netherlands.

He cowrote the paper with Floris P. de Lange, Michael Wiemers, and Harold Bekkering of Radboud and Roger D. Newman-Norlund of the University of South Carolina. This kind of mimicry is well-established, but Ondobaka and his colleagues suspected that what people mimic depends on their goals.

“If you and I both want to drink coffee, it would be good for me to synchronize my movement with yours,” Ondobaka says. “But if you’re going for a walk and I need coffee, it wouldn’t make sense to be coupled on this movement level.”

Ondobaka and his colleagues devised an experiment to see how much of a pull people feel to mimic when they have the same or different goals from someone else. Each participant sat across from an experimenter. They played a sort of card game on a touch screen embedded in the table between. First, two cards appeared in front of the experimenter, who chose either the higher or the lower card. Then two cards appeared in front of the participant. This happened 16 times in a row. For some 16-game series, the participant was told to do the same as the experimenter—to choose the higher (or lower) card. For others, they were told to do the opposite. Participants were told to move as quickly and as accurately as possible.

When the participant was supposed to make the same choice as the experimenter, they moved faster when they were also reaching in the same direction as the experimenter. But when they were told to do the opposite of the experimenter—when they had different goals—they didn’t go any faster when making the same movement as the other person. This means having different goals got in the way of the urge to mimic, Ondobaka says.

The researchers think that people only copy each other’s movements when they’re trying to accomplish the same thing. The rest of the time, actions are more related to your internal goals. “We’re not walking around like chameleons copying everything,” Ondobaka says. If you’re on a busy street with dozens of people in view, you’re not copying everything everybody does—just the ones that have the same goal as you. “If a colleague or a friend is going with you, you will cross the street together.”

For more information about this study, please contact: Sasha Ondobaka at s.ondobaka@donders.ru.nl.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Interplay Between Action and Movement Intentions During Social Interaction" and access to other Psychological Science research findings, please contact Divya Menon at 202-293-9300 or dmenon@psychologicalscience.org.

Divya Menon | EurekAlert!
Further information:
http://www.psychologicalscience.org

Further reports about: Chameleons Psychological Science kind of mimicry mimic movements

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>