Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People Aren’t Born Afraid of Spiders and Snakes: Fear Is Quickly Learned During Infancy

25.01.2011
There’s a reason why Hollywood makes movies like Arachnophobia and Snakes on a Plane: Most people are afraid of spiders and snakes. A new paper published in Current Directions in Psychological Science, a journal of the Association for Psychological Science, reviews research with infants and toddlers and finds that we aren’t born afraid of spiders and snakes, but we can learn these fears very quickly.

One theory about why we fear spiders and snakes is because so many are poisonous; natural selection may have favored people who stayed away from these dangerous critters. Indeed, several studies have found that it’s easier for both humans and monkeys to learn to fear evolutionarily threatening things than non-threatening things.

For example, research by Arne Ohman at the Karolinska Institute in Sweden, you can teach people to associate an electric shock with either photos of snakes and spiders or photos of flowers and mushrooms—but the effect lasts a lot longer with the snakes and spiders. Similarly, Susan Mineka’s research (from Northwestern University) shows that monkeys that are raised in the lab aren’t afraid of snakes, but they’ll learn to fear snakes much more readily than flowers or rabbits.

The authors of the Current Directions in Psychological Science paper have studied how infants and toddlers react to scary objects. In one set of experiments, they showed infants as young as 7 months old two videos side by side—one of a snake and one of something non-threatening, such as an elephant. At the same time, the researchers played either a fearful voice or a happy voice. The babies spent more time looking at the snake videos when listening to the fearful voices, but showed no signs of fear themselves.

“What we’re suggesting is that we have these biases to detect things like snakes and spiders really quickly, and to associate them with things that are yucky or bad, like a fearful voice,” says Vanessa LoBue of Rutgers University, who cowrote the paper with David H. Rakison of Carnegie Mellon University and Judy S. DeLoache of the University of Virginia.

In another study, three-year-olds were shown a screen of nine photographs and told to pick out some target item. They identified snakes more quickly than flowers and more quickly than other animals that look similar to snakes, such as frogs and caterpillars. Children who were afraid of snakes were just as fast at picking them out than children who hadn’t developed that fear.

“The original research by Ohman and Mineka with monkeys and adults suggested two important things that make snakes and spiders different,” LoBue says. “One is that we detect them quickly. The other is that we learn to be afraid of them really quickly.” Her research on infants and young children suggests that this is true early in life, too—but not innate, since small children aren’t necessarily afraid of snakes and spiders.

For more information about this study, please contact: Vanessa LoBue at vlobue@psychology.rutgers.edu.

Current Directions in Psychological Science, a journal of the Association for Psychological Science, publishes concise reviews on the latest advances in theory and research spanning all of scientific psychology and its applications. For a copy of "Threat Perception Across the Life Span: Evidence for Multiple Converging Pathways," please contact Keri Chiodo at 202-293-9300 or kchiodo@psychologicalscience.org.

Keri Chiodo | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>