Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People Aren’t Born Afraid of Spiders and Snakes: Fear Is Quickly Learned During Infancy

25.01.2011
There’s a reason why Hollywood makes movies like Arachnophobia and Snakes on a Plane: Most people are afraid of spiders and snakes. A new paper published in Current Directions in Psychological Science, a journal of the Association for Psychological Science, reviews research with infants and toddlers and finds that we aren’t born afraid of spiders and snakes, but we can learn these fears very quickly.

One theory about why we fear spiders and snakes is because so many are poisonous; natural selection may have favored people who stayed away from these dangerous critters. Indeed, several studies have found that it’s easier for both humans and monkeys to learn to fear evolutionarily threatening things than non-threatening things.

For example, research by Arne Ohman at the Karolinska Institute in Sweden, you can teach people to associate an electric shock with either photos of snakes and spiders or photos of flowers and mushrooms—but the effect lasts a lot longer with the snakes and spiders. Similarly, Susan Mineka’s research (from Northwestern University) shows that monkeys that are raised in the lab aren’t afraid of snakes, but they’ll learn to fear snakes much more readily than flowers or rabbits.

The authors of the Current Directions in Psychological Science paper have studied how infants and toddlers react to scary objects. In one set of experiments, they showed infants as young as 7 months old two videos side by side—one of a snake and one of something non-threatening, such as an elephant. At the same time, the researchers played either a fearful voice or a happy voice. The babies spent more time looking at the snake videos when listening to the fearful voices, but showed no signs of fear themselves.

“What we’re suggesting is that we have these biases to detect things like snakes and spiders really quickly, and to associate them with things that are yucky or bad, like a fearful voice,” says Vanessa LoBue of Rutgers University, who cowrote the paper with David H. Rakison of Carnegie Mellon University and Judy S. DeLoache of the University of Virginia.

In another study, three-year-olds were shown a screen of nine photographs and told to pick out some target item. They identified snakes more quickly than flowers and more quickly than other animals that look similar to snakes, such as frogs and caterpillars. Children who were afraid of snakes were just as fast at picking them out than children who hadn’t developed that fear.

“The original research by Ohman and Mineka with monkeys and adults suggested two important things that make snakes and spiders different,” LoBue says. “One is that we detect them quickly. The other is that we learn to be afraid of them really quickly.” Her research on infants and young children suggests that this is true early in life, too—but not innate, since small children aren’t necessarily afraid of snakes and spiders.

For more information about this study, please contact: Vanessa LoBue at vlobue@psychology.rutgers.edu.

Current Directions in Psychological Science, a journal of the Association for Psychological Science, publishes concise reviews on the latest advances in theory and research spanning all of scientific psychology and its applications. For a copy of "Threat Perception Across the Life Span: Evidence for Multiple Converging Pathways," please contact Keri Chiodo at 202-293-9300 or kchiodo@psychologicalscience.org.

Keri Chiodo | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>