Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Penn Study Provides First Clear Idea of How Rare Bone Disease Progresses

Mutation Causing “Leaky” Protein Production Leads to Extra Bone Growth

An international team of scientists, led by researchers at the University of Pennsylvania School of Medicine, is taking the first step in developing a treatment for a rare genetic disorder called fibrodysplasia ossificans progressiva (FOP), in which the body’s skeletal muscles and soft connective tissue turns to bone, immobilizing patients over a lifetime with a second skeleton.

Reporting in the November issue of the Journal of Clinical Investigation senior authors Eileen Shore, PhD, Professor of Genetics and Orthopedics, and Mary Mullins, PhD, Professor of Cell and Developmental Biology, with scientists in Japan and Germany, demonstrated that the mutation that causes FOP mistakenly activates a cascade of biochemical events in soft tissues that kicks off the process of bone development. The linchpin of the cellular signaling gone awry is a receptor for a bone morphogenetic protein, or BMP.

The present study provides the first clear glimpse of how FOP might develop at a cellular level in the human body. Shore and co-author Frederick Kaplan, MD, the Nassau Professor of Orthopedic Molecular Medicine, and their research team, discovered the gene for FOP in 2006.

“If you think of BMP proteins as the hand that turns on a water faucet, the faucet, or receptor, should stay off if you never turn the handle,” Shore says. "What our experiments show is that in FOP patients the faucet is leaky, even when it is not actively turned on.” BMP receptors are protein switches that help determine the fate of stem cells in which they are expressed.

“The mutation is mildly activating, and so it may take time or the right tissue environment to allow the signal to tip the balance to induce bone formation, explains Shore. “This is a very important finding, because it can help explain why the disease progresses as it does."

The finding that the FOP mutation changes the BMP receptor such that it is effectively on most of the time gives Shore and colleagues a target to shoot for in potentially controlling the disease.

Biology Run Amok

FOP is basically a case of biology run amok. During the process of normal bone formation, a temporary cartilage structure is laid down, and then is eventually replaced by bone. In the case of FOP, that normal process of bone formation occurs inappropriately in soft tissue, sometimes in response to injury, and sometimes spontaneously, typically beginning by age 5 or so. FOP occurs in about one in 2 million individuals.

The FOP mutation is a single replacement for a DNA building block in the gene for a receptor protein called ACVR1. In 2006, Kaplan and Shore’s team discovered that in the DNA of every patient with FOP they examined, the same mutation occurred: one building block in the protein-coding region of the ACVR1 gene is replaced by another, resulting in conversion of a single arginine amino acid in the sequence of the ACVR1 protein to histidine. The question the current study addresses is, what is the consequence of that change?

In experiments by Qi Shen, a postdoctoral fellow in the Shore-Kaplan lab and Shawn Little, a PhD student in the Mullins lab, the team found, using both cultured cells and zebrafish, that the specific mutation modifies ACVR1 in such a way that it acts as if it has been signaled by BMP, even when it hasn't. The experiments further show that the mutant ACVR1 receptor alters the usual binding of an ACVR1 partner protein, FKBP1A, which normally keeps the ACVR1 receptor off in the absence of BMP. The result is activation of a cell-signaling cascade that culminates in changes in gene expression, and ultimately, in the formation of new bone.

“FKBP1A is like the safety pin in a hand grenade,” says Kaplan. “The FOP mutation damages the hand grenade in a very specific way that the safety pin does not work. When triggered by injury, the result is explosive new bone formation.”

Enter the Zebrafish

Mullins' participation in the study was serendipitous, says Shore. Mullins studies BMP signaling in zebrafish, and in these animals BMP plays many roles, including establishing an organism's basic body plan. Mullins’ long time interest was a particular gene critical to this process, called Alk8. As it turns out, Alk8 is the zebrafish equivalent of human ACVR1.

Importantly, Mullins had already established a zebrafish genetic line that fails to express Alk8. When the team inserted the gene for human ACVR1 into those fish, their normal body plan was restored. But, when they used the FOP mutation instead, the effect was one of overcompensation

"The FOP form of ACVR1 causes too much BMP expression and we get a hyper-ventralized embryo, too much cell development in the tail region of the fish,” Shore explains. "So this confirmed our cell culture studies showing the mutant ACVR1 an activating mutation."

Colleagues at the Max Planck Institute for Molecular Genetics in Berlin, Germany, conducted additional experiments demonstrating that the FOP form of ACVR1 can also enhance cartilage cell differentiation. In the presence of the mutation, mild activation of cartilage development was observed to occur without activation by BMP like a leaky faucet, but could be additionally stimulated by BMP, the fully turned-on faucet.

People with FOP have a mostly normal skeleton and no evidence of extra-skeletal bone at birth; after birth it can be several years before the disease develops, forming extra-skeletal bone either spontaneously or as a result of trauma. The bone formation then progresses in a series of periodic episodes. The current study suggests this periodic progression may occur because the FOP mutation does not turn the ACVR1 faucet on all the way.

"These studies are a good beginning at getting a grasp on what the mutation is and how it is affecting BMP signaling in the cells," says Shore. "But there's a lot more to be understood."

The study was supported by the National Institutes of Arthritis and Musculoskeletal and Skin Diseases, Deutsche Forschungsgemeinschaft, The Center for Research in FOP and Related Disorders, The International FOP Association, The Rita Allen Foundation, The Ian Cali Endowment, the Weldon Family Endowment, and The Isaac & Rose Nassau Professorship of Orthopaedic Molecular Medicine.

PENN Medicine is a $3.6 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #3 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to the National Institutes of Health, received over $366 million in NIH grants (excluding contracts) in the 2008 fiscal year. Supporting 1,700 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System (UPHS) includes its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s top ten “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center, named one of the nation’s “100 Top Hospitals” for cardiovascular care by Thomson Reuters. In addition UPHS includes a primary-care provider network; a faculty practice plan; home care, hospice, and nursing home; three multispecialty satellite facilities; as well as the Penn Medicine at Rittenhouse campus, which offers comprehensive inpatient rehabilitation facilities and outpatient services in multiple specialties.

Karen Kreeger | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>