Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn molecular scientists develop color-changing stress sensor

19.08.2011
It is helpful — even life-saving — to have a warning sign before a structural system fails, but, when the system is only a few nanometers in size, having a sign that's easy to read is a challenge.

Now, thanks to a clever bit of molecular design by University of Pennsylvania and Duke University bioengineers and chemists, such warning can come in the form of a simple color change.


This is an enhanced image of a polymersome changing color under stress. Credit: Neha Kamat, University of Pennsylvania

The study was conducted by professor Daniel Hammer and graduate students Neha Kamat and Laurel Moses of the Department of Bioengineering in Penn's School of Engineering and Applied Science. They collaborated with associate professor Ivan Dmochowski and graduate student Zhengzheng Liao of the Department of Chemistry in Penn's School of Arts and Sciences, as well as professor Michael Therien and graduate student Jeff Rawson of Duke.

Their work was published in the journal Proceedings of the National Academy of Sciences.

The researchers' work involves two molecules: porphyrins, a class of naturally occurring pigments, and polymersomes, artificially engineered capsules that can carry a molecular payload in their hollow interiors. In this case, Kamat and Liao hypothesized that polymersomes could be used as stress sensors if their membranes were embedded with a certain type of light-emitting porphyrins.

The Penn researchers collaborated with the Therien lab, where the porphyrins were originally developed, to design polymersomes that were studded with the light-emitting molecules. When light is shined on these labeled polymersomes, the porphyrins absorb the light and then release it at a specific wavelength, or color. The Therien lab's porphyrins play a critical role in using the polymersomes as stress sensors, because their configuration and concentration controls the release of light.

"When you package these porphyrins in a confined environment, such as a polymersome membrane, you can modulate the light emission from the molecules," Hammer said. "If you put a stress on the confined environment, you change the porphyrin's configuration, and, because their optical release is tied to their configuration, you can use the optical release as a direct measure of the stress in the environment."

For example, the labeled polymersomes could be injected into the blood stream and serve as a proxy for neighboring red blood cells. As both the cells and polymersomes travel through an arterial blockage, for example, scientists would be able to better understand what happens to the blood cell membranes by making inferences from the stress label measurements.

The researchers calibrated the polymersomes by subjecting them to several kinds of controlled stresses — tension and heat, among others — and measuring their color changes. The changes are gradations of the near infrared spectrum, so measurements must be made by computers, rather than the naked eye. Rapidly advancing body-scanning technology, which uses light rather than magnetism or radiation, is well suited to this approach.

Other advances in medicine could benefit, as well. As cutting-edge pharmaceutical approaches already use similar molecular technology, the researchers' porphyrin labeling system could be integrated into medicine-carrying polymersomes.

"These kinds of tools could be used to monitor drug delivery, for example," Kamat said. "If we have a way to see how stressed the container is over time, we know how much of the drug has come out."

And, though the researchers chose the engineered polymersomes due to the wide range of stress they can endure, the same stress-labeling technique could soon be applied directly to naturally occurring tissues.

"One future application for this is to use dyes like these porphyrins but include them directly in a cellular membranes," Kamat said. "No one has taken a look at the intrinsic stress inside a membrane so these molecules would be perfect for the job."

The work was supported by the National Institutes of Health, the National Science Foundation and its Materials Research Science and Engineering Center program and the National Center for Research Resources.

Kamat is an NSF Graduate Fellow.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>