Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paved surfaces can worsen air quality, study indicates

07.06.2011
New research focusing on the Houston area suggests that widespread urban development alters weather patterns in a way that can make it easier for pollutants to accumulate during warm summer weather instead of being blown out to sea.

The international study could have implications for the air quality of fast-growing coastal cities in the United States and other midlatitude regions overseas. The reason: the proliferation of strip malls, subdivisions, and other paved areas may interfere with breezes needed to clear away smog and other pollution.

The research team combined extensive atmospheric measurements with computer simulations to examine the impact of pavement on breezes in Houston. They found that, because pavement soaks up heat and keeps land areas relatively warm overnight, the contrast between land and sea temperatures is reduced during the summer. This in turn causes a reduction in nighttime winds that would otherwise blow pollutants out to sea.

In addition, built structures interfere with local winds and contribute to relatively stagnant afternoon weather conditions.

"The developed area of Houston has a major impact on local air pollution," says scientist Fei Chen of the National Center for Atmospheric Research in Boulder, Colo. and lead author of the new study. "If the city continues to expand, it's going to make the winds even weaker in the summertime, and that will make air pollution much worse."

While cautioning that more work is needed to better understand the impact of urban development on wind patterns, Chen says the research can eventually help forecasters improve projections of major pollution events. Policy makers might also consider new approaches to development as cities work to clean up unhealthy air.

The article will be published this month in the Journal of Geophysical Research- Atmospheres, a publication of the American Geophysical Union.

Houston, known for its mix of petrochemical facilities, sprawling suburbs, and traffic jams that stretch for miles, has some of the highest levels of ground-level ozone and other air pollutants in the United States. State and federal officials have long worked to regulate emissions from factories and motor vehicles in an effort to improve air quality.

The new study suggests that focusing on the city's development patterns and adding to its already extensive park system could provide air quality benefits as well.

"If you made the city greener and created lakes and ponds, then you probably would have less air pollution even if emissions stayed the same," Chen explains. "The nighttime temperatures over the city would be lower and winds would become stronger, blowing the pollution out to the Gulf."

Chen adds that more research is needed to determine whether paved areas are having a similar effect in other cities in the midlatitudes where sea breezes are strongest. Coastal cities from Los Angeles to Shanghai are striving to reduce air pollution levels. However, because each city's topography and climatology is different, it remains uncertain whether expanses of pavement are significantly affecting wind patterns.

For the Houston study, Chen and his colleagues focused on the onset of a nine-day period of unusually hot weather, stagnant winds, and high pollution in the Houston-Galveston area that began on August 30, 2000. They chose that date partly because they could draw on extensive atmospheric measurements taken during that summer by researchers participating in a field project known as the Texas Air Quality Study 2000. That campaign was conducted by the National Oceanic and Atmospheric Administration, the U.S. Department of Energy, universities, and the Texas Natural Resource Conservation Commission.

In addition to the real-world measurements, the study team created a series of computer simulations with NCAR's Advanced Weather Research and Forecasting model.

Fei and his colleagues focused on wind patterns, which are driven by temperature contrasts between land and sea. If, as in one of the computer simulations, Houston were covered with cropland instead of pavement, inland air would heat up more than marine air during summer days, causing a sea breeze to blow onshore in the afternoon.

Conversely, as the inland air became cooler than marine air overnight, a land breeze would blow offshore-potentially blowing away pollution.

In contrast, the actual paved surfaces of Houston absorb more heat during the day and are warmer overnight. This results in stagnation for three reasons:

- At night, the city's temperatures are similar to those offshore. The lack of a sharp temperature gradient has the effect of reducing winds.

- During the day, the hot paved urban areas tend to draw in air from offshore. However, this air is offset by prevailing wind patterns that blow toward the water, resulting in relatively little net movement in the atmosphere over the city.

- Buildings and other structures break up local winds far more than does the relatively smooth surface of croplands or a natural surface like grasslands. This tends to further reduce breezes.

"The very existence of the Houston area favors stagnation," the article states.

The study also found that drought conditions can worsen air pollution. This is because dry soil tends to heat up more quickly than wet soil during the day. It releases more of that heat overnight, reducing the temperature contrast between land and water and thereby reducing nighttime breezes.

By comparing observations taken in 2000 with computer simulations of Houston-area winds and temperatures, the researchers were able to confirm that the Advanced Weather Research and Forecasting model was accurately capturing local meteorological conditions.

The research was funded by the U.S. Air Force Weather Agency, the U.S. Defense Threat Reduction Agency, and the National Science Foundation.

Title:
"A numerical study of interactions between surface forcing and sea-breeze circulations and their effects on stagnation in the greater Houston area"
Authors:
Fei Chen, Mukul Tewari: National Center for Atmospheric Research, Boulder, Colorado, USA;

Shiguang Miao: Institute of Urban Meteorology, China Meteorological Administration, Beijing, China;

Jian-Wen Bao: National Oceanic and Atmospheric Administration, Boulder, Colorado, USA;

Hiroyuki Kusaka: Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan.

Contact information for the authors:
Fei Chen, NCAR Scientist: feichen@ucar.edu, +1 (303) 497-8454

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>