Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patterns in sky brightness depend very strongly on location


At many locations around the world, the night sky shines hundreds of times brighter than it did before the introduction of artificial light. Berlin based researchers from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) and the Freie Universität Berlin led a groundbreaking study into variations in the radiance of the night sky. Together with an international team of researchers from Europe, North America, and Asia, they found remarkably large variations in artificial night sky brightness at the different observation sites.

Light allows us to extend the day, increasing productivity. But the introduction of light into the nighttime environment is one of the most striking changes humans have made to the Earth’s physical environment, and it is associated with several unintended negative consequences.

In natural areas like Glacier National Park in the USA, clouds make the sky darker. In cities like Berlin they make it far brighter.

Photo credits: Ray Stinson (left) Christopher Kyba (right)

One example is skyglow, the artificial brightening of the night sky. Until now, all published skyglow research had been local or regional in scale. The new study greatly expands on this earlier work, examining light patterns at 50 locations worldwide. Most of the study sites had considerable skyglow: at 30 of the study sites, the sky was more than twice as bright as a natural star-filled sky more than 95% of the time.

The study, published Thursday in Nature Publishing Group's open access journal "Scientific Reports", is the most comprehensive examination of skyglow ever undertaken.

Cloudy nights are the most important

The study examined the effect that clouds have on the night sky brightness, and found that it varies remarkably, depending on the location. “Thick clouds act like a surface and scatter light back in the direction it came from” said study leader Dr. Christopher Kyba, study leader and former IGB researcher now based at the German Research Centre for Geosciences (GFZ).

For millions of years, this made overcast nights the darkest, with starlight reflected back into space. However, this occurred at only 2 of the 22 sites where nearby meteorological observations were available. At most sites, the overcast nights were many times brighter than clear nights. The researchers were surprised to discover that the ratio between overcast and clear sky brightness grows most rapidly as cities are approached. Once the city limit is crossed, the rate of this increase appears to slow.

The brightest individual observation came from a site near the Dutch town of Schipluiden. There, the sky was 10,000 times brighter than the darkest observation reported from Kitt Peak in the USA. “This difference is much larger than what is observed in the daytime” said Kyba. “It is roughly comparable to the difference between a surface illuminated by direct sunlight and one in the dim area between two street lamps.”

Even when the researchers restricted their analysis to average sky brightness at midnight, large differences remained. “Overcast nights in Berlin were typically 300 times brighter than those on the Dutch island of Schiermonnikoog in the North Sea” said Kai Pong Tong, the study’s second author and a PhD student at the University of Bremen.

Unforeseen consequences of lighting

The impact of brighter nights on the natural environment is still largely unknown. Researchers hypothesize that this change affects the behavior of nocturnal animals, affects navigation and migration for some species, and unbalances traditional predator-prey relationships. Even social interactions such as reproduction are believed to be affected.

Kyba points out that although the present study is the most widespread to date, it considered only a small fraction of the Earth’s nightly lit area. The researchers call for an international network of similar monitoring stations. The data gathered by such a network would allow researchers to calibrate and test models that predict skyglow in areas for which monitoring doesn’t exist. “Models will be an essential tool to understand the social and environmental impacts of skyglow” according to Kyba.

Lead author contact:
Dr. Christopher Kyba
Deutsches GeoForschungsZentrum, Potsdam and
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin
Telephone: +49 (0)331 288 28973

Additional contacts by country:

Dr. Phil Langill
Rothney Astrophysical Observatory, University of Calgary, Canada
Telephone: +1 403 874 1877

PD Dr. Franz Hölker
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin
Telephone: +49 (0)30 64 181 665

PD Dr. Axel Schwope
Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany
Telephone: +49-331-7499232

Dr. Georg Heygster
Universität Bremen, Institute of Environmental Physics, Bremen, Germany
Telephone +49 421-218-62180

Dr. Andrea Giacomelli
Institute, City, Country:, Torniella, Italy
Telephone: +393471533857

Dr Thomas Davies
University of Exeter, Penryn, UK
Telephone: (+44) 1326259476

Press images:
In natural areas like Glacier National Park in the USA, clouds make the sky darker. In cities like Berlin they make it far brighter. (Photo credits: Ray Stinson (left) Christopher Kyba (right))

Panel A shows the radiance at Kitt Peak relative to a natural starry sky (NSU=1), where clouds make the sky darker. Panel B shows the radiance in central Berlin. The upper and lower bands correspond to overcast and clear skies, and the radiance can be seen to decrease as the night progresses.

Kyba C.C.M. et al. (2015): Worldwide variations in artificial skyglow. Scientific Reports 5:8409. DOI: 10.1038/srep08409.

About the IGB:
The Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, is an independent and interdisciplinary research centre dedicated to the creation, dissemination, and application of knowledge about freshwater ecosystems. Working in close partnership with the scientific community, government agencies, as well as the private sector, guarantees the development of innovative solutions to the most pressing challenges facing freshwater ecosystems and human societies.

Weitere Informationen:

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>