Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns in sky brightness depend very strongly on location

12.02.2015

At many locations around the world, the night sky shines hundreds of times brighter than it did before the introduction of artificial light. Berlin based researchers from the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) and the Freie Universität Berlin led a groundbreaking study into variations in the radiance of the night sky. Together with an international team of researchers from Europe, North America, and Asia, they found remarkably large variations in artificial night sky brightness at the different observation sites.

Light allows us to extend the day, increasing productivity. But the introduction of light into the nighttime environment is one of the most striking changes humans have made to the Earth’s physical environment, and it is associated with several unintended negative consequences.


In natural areas like Glacier National Park in the USA, clouds make the sky darker. In cities like Berlin they make it far brighter.

Photo credits: Ray Stinson (left) Christopher Kyba (right)

One example is skyglow, the artificial brightening of the night sky. Until now, all published skyglow research had been local or regional in scale. The new study greatly expands on this earlier work, examining light patterns at 50 locations worldwide. Most of the study sites had considerable skyglow: at 30 of the study sites, the sky was more than twice as bright as a natural star-filled sky more than 95% of the time.

The study, published Thursday in Nature Publishing Group's open access journal "Scientific Reports", is the most comprehensive examination of skyglow ever undertaken.

Cloudy nights are the most important

The study examined the effect that clouds have on the night sky brightness, and found that it varies remarkably, depending on the location. “Thick clouds act like a surface and scatter light back in the direction it came from” said study leader Dr. Christopher Kyba, study leader and former IGB researcher now based at the German Research Centre for Geosciences (GFZ).

For millions of years, this made overcast nights the darkest, with starlight reflected back into space. However, this occurred at only 2 of the 22 sites where nearby meteorological observations were available. At most sites, the overcast nights were many times brighter than clear nights. The researchers were surprised to discover that the ratio between overcast and clear sky brightness grows most rapidly as cities are approached. Once the city limit is crossed, the rate of this increase appears to slow.

The brightest individual observation came from a site near the Dutch town of Schipluiden. There, the sky was 10,000 times brighter than the darkest observation reported from Kitt Peak in the USA. “This difference is much larger than what is observed in the daytime” said Kyba. “It is roughly comparable to the difference between a surface illuminated by direct sunlight and one in the dim area between two street lamps.”

Even when the researchers restricted their analysis to average sky brightness at midnight, large differences remained. “Overcast nights in Berlin were typically 300 times brighter than those on the Dutch island of Schiermonnikoog in the North Sea” said Kai Pong Tong, the study’s second author and a PhD student at the University of Bremen.

Unforeseen consequences of lighting

The impact of brighter nights on the natural environment is still largely unknown. Researchers hypothesize that this change affects the behavior of nocturnal animals, affects navigation and migration for some species, and unbalances traditional predator-prey relationships. Even social interactions such as reproduction are believed to be affected.

Kyba points out that although the present study is the most widespread to date, it considered only a small fraction of the Earth’s nightly lit area. The researchers call for an international network of similar monitoring stations. The data gathered by such a network would allow researchers to calibrate and test models that predict skyglow in areas for which monitoring doesn’t exist. “Models will be an essential tool to understand the social and environmental impacts of skyglow” according to Kyba.

Lead author contact:
Dr. Christopher Kyba
Deutsches GeoForschungsZentrum, Potsdam and
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin
Telephone: +49 (0)331 288 28973
Email: kyba@gfz-potsdam.de

Additional contacts by country:

CANADA:
Dr. Phil Langill
Rothney Astrophysical Observatory, University of Calgary, Canada
Telephone: +1 403 874 1877
Email: pplangil@ucalgary.ca

GERMANY:
PD Dr. Franz Hölker
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin
Telephone: +49 (0)30 64 181 665
E-Mail: hoelker@igb-berlin.de

PD Dr. Axel Schwope
Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany
Telephone: +49-331-7499232
Email: aschwope@aip.de

Dr. Georg Heygster
Universität Bremen, Institute of Environmental Physics, Bremen, Germany
Telephone +49 421-218-62180
Email: heygster@uni-bremen.de

ITALY:
Dr. Andrea Giacomelli
Institute, City, Country: Attivarti.org, Torniella, Italy
Telephone: +393471533857
E-Mail: info@pibinko.org

UNITED KINGDOM:
Dr Thomas Davies
University of Exeter, Penryn, UK
Telephone: (+44) 1326259476
E-Mail: Thomas.Davies@exeter.ac.uk

Press images:
In natural areas like Glacier National Park in the USA, clouds make the sky darker. In cities like Berlin they make it far brighter. (Photo credits: Ray Stinson (left) Christopher Kyba (right))

Panel A shows the radiance at Kitt Peak relative to a natural starry sky (NSU=1), where clouds make the sky darker. Panel B shows the radiance in central Berlin. The upper and lower bands correspond to overcast and clear skies, and the radiance can be seen to decrease as the night progresses.

Source:
Kyba C.C.M. et al. (2015): Worldwide variations in artificial skyglow. Scientific Reports 5:8409. DOI: 10.1038/srep08409.

About the IGB:
The Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, is an independent and interdisciplinary research centre dedicated to the creation, dissemination, and application of knowledge about freshwater ecosystems. Working in close partnership with the scientific community, government agencies, as well as the private sector, guarantees the development of innovative solutions to the most pressing challenges facing freshwater ecosystems and human societies.

Weitere Informationen:

http://www.igb-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>