Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patients with autism spectrum disorder are not sensitive to 'being imitated'


Brain science reveled the reason why they are not sensitive

A Japanese research group led by Prof Norihiro Sadato, a professor of the National Institute for Physiological Sciences (NIPS), National Institutes of Natural Sciences (NINS), has found that people with autism spectrum disorders (ASD) have decreased activity in an area in the brain critical for understanding if his/her movement was imitated by others. These results will be published in Neuroscience Research (available online at

The research group of Norihiro Sadato, a professor of NIPS, Hirotaka Kosaka, a specially-assigned associate professor of the University of Fukui, and Toshio Munesue, a professor of Kanazawa University measured brain activity by functional magnetic resonance imaging (fMRI) when one's movement was imitated by others.

The group studied brain activity when a subject saw his/her finger movement imitated or not imitated by others. Normal subjects have increased activity in the extrastriate body area (EBA) when they are imitated compared to when they are not being imitated.

The EBA is a region in the visual cortex for visual processing that responds powerfully during the perception of human body parts. On the other hand, because this kind of activity in the EBA of subjects with ASD was not observed, it shows that the EBA of subjects with ASD is not working properly when imitated.

Persons with ASD are known to have difficulty in interpersonal communication and have trouble noticing that their movement was imitated. Behavioral intervention research to alleviate ASD is proceeding and indicates that training utilizing imitation is useful.

The result of the above research not only provided clues to ASD, but also can be used in the evaluation of behavioral intervention to alleviate the disorder.


This research was carried out as part of the "Strategic Research Program for Brain Sciences" of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Grants-in-Aid for Scientific Research of MEXT.

Norihiro Sadato | Eurek Alert!
Further information:

Further reports about: ASD Brain NIPS activity autism spectrum disorders disorder fMRI movement spectrum visual cortex

More articles from Studies and Analyses:

nachricht Climate study finds evidence of global shift in the 1980s
26.11.2015 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Network analysis shows systemic risk in mineral markets
16.11.2015 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>