Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patients are willing to undergo multiple tests for new cancer treatments

04.03.2011
Mayo Clinic-Scottsdale Healthcare-TGen study bodes well for the future of personalized medicine

Cancer patients are willing to undergo many tests to receive advanced experimental treatment in clinical trials, according to a new study by Mayo Clinic, Scottsdale Healthcare and the Translational Genomics Research Institute (TGen).

Researchers said patients' willingness to undergo tests bodes well for the future of personalized medicine, in which specific treatments are prescribed depending on the DNA genetic makeup of patients' tumors.

"This is the first study of its kind where patients themselves were asked what tests and medical imaging studies they would be willing to undergo while participating in clinical studies for their cancer. Patients also were asked how invasive they perceived such tests and studies," said Raoul Tibes, M.D. Ph.D., lead author of the study recently published online by the prestigious scientific journal Cancer, a physician-scientist for the Mayo Clinic in Arizona.

The study, Patient willingness to undergo pharmacodynamic and pharmacokinetic tests in early phase oncology trials, is scheduled for print publication in the July 15, 2011, edition of Cancer, published by the American Cancer Society.

To learn and understand more about the molecular aspects of cancer, researchers need tumor samples and images from tests like computed tomography (CAT) scans, magnetic resonance imaging (MRIs), positron emission tomography (PET) scans and other tests. Early-phase clinical trials involve analyses of pharmacodynamics (what the drug does to the body) and pharmacokinetics (what the body does to a drug). The authors conducted a prospective study, examining patients' willingness to undergo such tests and the number of tests the patients would tolerate.

"What we learned is that patients are, in general, very willing to undergo additional, extra tests to participate in clinical studies," said Dr. Tibes, a former research doctor for TGen Clinical Research Service, a clinical-trials partnership of TGen and Scottsdale Healthcare at the Virginia G. Piper Cancer Center in Scottsdale.

"This study will provide valuable information, collected from actual patients, thereby informing clinical investigations in an era where we have more and more molecular-targeted therapies available, and our studies are more and more complex," Dr. Tibes said.

The study included 61 patients — 22 women and 39 men — with advanced malignancies.

The overall willingness to undergo study-required tests was very high, the study found. Patients were most willing to undergo urine, blood, ultrasound, x-rays, echocardiogram, PET and CAT scan studies. They were least willing to undergo tumor and skin biopsies and MRIs. However, most patients were at lest wiling to give one tumor biopsy sample per study, and often two.

"This is important information, because it tells us that we can design clinical studies that ask patients to give extra tumor biopsies. But we need to carefully judge of how many biopsies we request and what molecular tests we do with the tumor sample," said Mitesh J. Borad, M.D., Associate Director of Phase I Drug Development at the Mayo Clinic in Arizona and the study's senior author.

Inconvenience and prior negative experiences for more invasive tests, such as skin biopsies, modestly affected patients' willingness to undergo these tests again, the study found. Those patients with college educations and insurance coverage were more willing to undergo tests.

Dr. Tibes, who also is Associate Director of Mayo Clinic's Acute and Chronic Leukemia Program, said the study could serve as the basis of further exploration toward the design of patient-friendly, biomarker-driven clinical studies involving cancer.

"We're taking those results forward," said Dr. Tibes, emphasizing the need for similar patient-oriented research, and to clearly communicate and educate patients about their treatment, including the goals of clinical research. "I think we need to hear it from the patients: 'This is what I'm willing to tolerate.' I think we need to ask patients more. It is crucially important."

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers, and 50,100 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn.; Jacksonville, Fla.; and Scottsdale/Phoenix, Ariz.; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. Mayo Clinic Cancer Center is one of 40 U.S. medical centers that have been named as a National Cancer Institute (NCI) Comprehensive Cancer Center and the only national, multi-site center with the designation. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Press Contact:
Jim McVeigh
Mayo Clinic Public Affairs
480-301-4368
mcveigh.jim@mayo.edu
About the Virginia G. Piper Cancer Center at Scottsdale Healthcare
The Virginia G. Piper Cancer Center at Scottsdale Healthcare offers diagnosis, treatment, research, prevention and support in its facilities at the Scottsdale Healthcare Shea Medical Center, attracting patients from across Arizona and the U.S. Groundbreaking cancer research is conducted through its Scottsdale Healthcare Research Institute in collaboration with TGen and leading universities. Scottsdale Healthcare is the not-for-profit parent organization of the Scottsdale Healthcare Shea Medical Center, Scottsdale Healthcare Osborn Medical Center and Scottsdale Healthcare Thompson Peak Hospital, Virginia G. Piper Cancer Center, Scottsdale Healthcare Research Institute and Scottsdale Healthcare Foundation. For additional information, please visit www.shc.org.
Press Contact:
Keith Jones, Director of Public Relations
Virginia G. Piper Cancer Center at Scottsdale Healthcare
480-882-4412
kjones@shc.org
About TGen
The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, visit: www.tgen.org.
Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>