Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathways to Deep Decarbonization in Germany

02.09.2015

Study shows how Germany can decarbonize its energy system and reduce greenhouse gas emissions by more than 80% until 2050

In order to take an important step towards limiting global warming to less than 2 °C compared to pre-industrial times, countries are expected to achieve a new international agreement on the climate at the UN climate conference in Paris at the end of the year. According to climate science, this target can only be obtained if global net greenhouse gas (GHG) emissions approach zero by the second half of the century.

Against this background, the Deep Decarbonization Pathways Project (DDPP), coordinated by the Institute for Sustainable Development and International Relations (IDDRI) and the Sustainable Development Solutions Network (SDSN) set by the United Nations Secretary General, emerged in 2013.

The Deep Decarbonization Pathways Project (DDPP) is a collaborative global initiative led by IDDRI and SDSN that aims to demonstrate how individual countries can transition to a low-carbon economy preferably consistent with the internationally agreed target of limiting the increase in global temperature to less than 2°C.

Achieving this target will require a profound transformation of energy systems by mid-century, a "deep decarbonization". The project comprises 16 research teams composed of leading institutions from the world's largest GHG emitting countries: Australia, Brazil, Canada, China, France, Germany India, Indonesia, Italy, Japan, Mexico, Russia, South Africa, South Korea, United Kingdom, and United States.

Each team is exploring what is required to achieve this transformation in their own country's economy while taking into account socio-economic conditions, development aspirations, infrastructure stocks, natural resource endowments, and other relevant factors.

The now published DDPP country study for Germany explores what is required to achieve deep decarbonization in Germany. It has been conducted by the Wuppertal Institute for Climate, Environment and Energy, with the support of Stiftung Mercator. The study discusses how the German government's target of reducing domestic GHG emissions by 80 to 95% by 2050 (versus 1990) can be reached.

Potential pathways to deep decarbonization in Germany have been comparatively analyzed by means of a discussion of GHG mitigation scenarios currently available for Germany. The analysis shows that there are three “key strategies” which strongly contribute to GHG emission reduction in almost every scenario:

- Strong energy efficiency improvements, i.e. reduced energy input but steady output in all end-use sectors (residential, services, industry and transport sector)

- Increased use of domestic renewable energy sources (especially higher electricity production from wind and solar power plants)

- Extensive electrification of processes (e.g. electricity-based heat supply, electric vehicles) and use of renewable electricity-based synthetic gases/fuels (power to gas/fuels) in the medium to long term

In the last two decades, Germany has proven quite successful in the dissemination of renewable energy sources. This momentum needs to be maintained and further progress achieved. In contrast, energy efficiency improvements have so far fallen short of their potentials.

In order to be able to provide adequate framework conditions for energy efficiency improvements, this strategy needs to be focused on by policymakers within the coming years. A widespread electrification of processes requires structural changes which can only be achieved after the necessary preconditions (e.g. high share of electricity from renewable energy sources) have been created.

Realizing deep decarbonization, however, requires a successful implementation of additional strategies. In order to achieve a GHG reduction of 90% or more by 2050, especially the following can be employed:

- Final energy demand reductions through behavioral changes (modal shift in transport, changes in eating and heating habits etc.)

- Net imports of electricity from renewable sources or import of bioenergy
Use of carbon capture and storage technology (CCS) to reduce industry sector GHG emissions

- Reduction in non-CO2 emissions, especially in agriculture and industry

A successful implementation of GHG mitigation strategies is linked to significant challenges which need to be overcome jointly by politics and society. As Prof. Dr. Manfred Fischedick, Vice-President of the Wuppertal Institute, puts it: "Deep decarbonization is not possible without adequate political, institutional, cultural and social framework conditions". It appears to be particularly important to keep investment conditions stable, to increase the possibility for public participation and to ensure public acceptance for the required infrastructure projects.

The study shows that achieving decarbonization cannot be achieved in a one-time effort but requires consistent political and societal action over several decades. Prof. Fischedick underlines that "continuous commitment appears to be feasible only if we stop focussing on potential short-term disadvantages of the transition to a low-carbon energy system. We need to emphasize the fact that the implementation of decarbonization measures is not only beneficial for achieving domestic GHG reduction targets but also leads to significant additional advantages for society in other areas. Not only can such measures stimulate decarbonization efforts in other countries, but positive effects also occur locally, e.g. in the form of better air quality, increased innovation dynamics and export opportunities for companies. This should ultimately provide enough momentum for ambitious and courageous political action in Germany and worldwide".

You find a summary at the project information site of the Wuppertal Institute’s homepage http://wupperinst.org/en/projects/details/wi/p/s/pd/505/. The complete study is available on the website of the Deep Decarbonization Pathways Project (DDPP) http://deepdecarbonization.org.

Press release by Wuppertal Institute for Climate, Environment and Energy
Responsible: Prof. Dr. Uwe Schneidewind, President
Contact: Dorle Riechert, Public Relations
Tel. +49 202 2492-180, Fax +49 202 2492-108
E-mail: dorle.riechert@wupperinst.org

Dorle Riechert | idw - Informationsdienst Wissenschaft
Further information:
http://www.wupperinst.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>