Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parents’ stress leaves lasting marks on children’s genes: UBC-CFRI research

31.08.2011
Researchers at the University of British Columbia and the Child & Family Research Institute have shown that parental stress during their children’s early years can leave an imprint on their sons’ or daughters’ genes – an imprint that lasts into adolescence and may affect how these genes are expressed later in life.

The study, published online today in the journal Child Development, focused on epigenetics – the expression of genes as opposed to the underlying sequence of DNA. A central component of epigenetics is methylation, in which a chemical group attaches to parts of the DNA – a process that acts like a dimmer on gene function in response to social and physical environments.

Michael S. Kobor, a UBC associate professor of medical genetics, measured methylation patterns in cheek cell DNA collected recently by University of Wisconsin researchers from more than 100 adolescents. These patterns were compared to data obtained by the University of Wisconsin in 1990 and 1991, when these same children were infants and toddlers, and their parents were asked to report on their stress levels – including depression, family-expressed anger, parenting stress and financial stress.

Comparing DNA methylation to stress, Kobor’s team found that higher stress levels reported by mothers during their child’s first year correlated with methylation levels on 139 DNA sites in adolescents. They also discovered 31 sites that correlated with fathers’ higher reported stress during their child’s pre-school years (three-and-a-half to four-and-a-half years old).

“To our knowledge, this is the first demonstration, using carefully collected longitudinal data, that parental adversity during a child’s first years leads to discernible changes in his or her ‘epigenome,’ measurable more than a decade later,” says Kobor, a scientist at the Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute (CFRI), and a Mowafaghian Scholar at the Human Early Learning Partnership (HELP). “This literally illustrates a mechanism by which experiences ‘get under the skin’ to stay with us for a long time.”

The team also found that fathers’ stress level is more strongly associated with DNA methylation in daughters, while mothers’ stress level has an effect with both boys and girls. This reinforces other research showing that the absence of fathers or their lack of participation in parenting is associated with an earlier onset of puberty and difficult temperamental traits in girls, but not in boys.

In general, none of the genes whose methylation level correlated with stress were among those best known to play a role in controlling a person’s behaviour or reaction to environmental stress. But they did find some genes that had a consistent change in methylation levels at more than one site on the DNA, including one involved in the production of insulin, the hormone that regulates blood sugar levels, and three other genes possibly involved in brain development.

“What is particularly intriguing is that a mother’s higher stress levels during infancy, but not during the preschool years, leads to epigenetic changes,” says co-author Clyde Hertzman, a professor in UBC’s School of Population and Public Health and director of HELP. “And the opposite is true for fathers – it’s their higher stress during a child’s preschool years, but not during their infancy, that counts.”

“These results confirm what early childhood experts have long known – those first few years are a crucial period that sets the stage for much of what happens to the individual later in life,” said co-author Thomas Boyce, a professor at UBC’s Human Early Learning Partnership and a scientist at CFRI. “It helps explain why a child’s socioeconomic status is the single most powerful predictor of childhood health and that individual’s lifelong health.”

The UBC team’s collaborators at the University of Wisconsin were Marilyn J. Essex, a professor of psychiatry, and Jeffrey Armstrong, a psychiatry researcher. UBC research assistants Lucia Lam and Sarah Neumann performed the work in Michael Kobor’s lab. The research was supported by the U.S. National Institute of Mental Health, the Canadian Institute for Advanced Research and the Djavad Mowafaghian Foundation.

The UBC Faculty of Medicine provides innovative programs in the health and life sciences, teaching students at the undergraduate, graduate and postgraduate levels. Its faculty members received $295 million in research funds, 54 percent of UBC’s total research revenues, in 2010-11. For more information, visit www.med.ubc.ca.

The Centre for Molecular Medicine and Therapeutics is a synergistic group of scientists and researchers who share a strong sense of commitment to solve the many genetic questions surrounding human illness and well being. Affiliated with the University of British Columbia and the Child & Family Research Institute, CMMT conducts discovery research and translates that research into effective clinical and therapeutic strategies to promote health. For more information, visit www.cmmt.ubc.ca.

The Child & Family Research Institute conducts discovery, clinical and applied research to benefit the health of children and families. It is the largest institute of its kind in Western Canada. CFRI works in close partnership with the University of British Columbia, BC Children’s Hospital and Sunny Hill Health Centre for Children, BC Women’s Hospital & Health Centre, agencies of the Provincial Health Services Authority, and BC Children’s Hospital Foundation. CFRI has additional important relationships with BC’s five regional health authorities and with BC academic institutions Simon Fraser University, the University of Victoria, the University of Northern British Columbia, and the British Columbia Institute of Technology. For more information, visit www.cfri.ca.

The Human Early Learning Partnership is a collaborative, interdisciplinary research network, based at the University of British Columbia. HELP’s unique partnership brings together many scientific viewpoints to address complex early child development issues, with a focus of ensuring that research knowledge is translated to community and policy action. HELP connects more than 200 researchers, graduate students and practitioners from communities and institutions across B.C., Canada, and internationally. For more information, visit www.earlylearning.ubc.ca.

Brian Kladko | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>