Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone levels have sizeable impact on worker productivity

19.12.2012
Researchers in the Department of Health Policy and Management at Columbia's Mailman School of Public Health assessed the impact of pollution on agricultural worker productivity using daily variations in ozone levels.

Their results show that ozone, even at levels below current air-quality standards in most parts of the world, has significant negative impacts on worker productivity. Their findings suggest that environmental protection is important for promoting economic growth and investing in human capital in contrast to its common portrayal as a tax on producers. Results of the study are published in the American Economic Review.

Ozone pollution continues to be a pervasive global issue with much debate over optimal levels. While policy makers routinely note that regulating ozone smog leads to many health benefits like reduced hospitalizations and mortality rates, Matthew Neidell, PhD, associate professor at the Mailman School and principal investigator, set out to investigate whether lower air pollution might also affect job performance. Until this research, there had been no systematic evidence on the direct impact of pollution on worker productivity.

The researchers found that a 10 ppb (parts per billion) change in average ozone exposure results in a significant 5.5 percent change in agricultural worker productivity. "These estimates are particularly noteworthy as the U.S. EPA is currently moving in the direction of reducing federal ground-level ozone standards," said Dr.Neidell, PhD. This past September President Obama said he would not support a proposal by the Environmental Protection Agency to tighten the federal ozone standard because it would pose too heavy a burden on businesses, which stunned public health experts and environmentalists.

Dr. Neidell also points out that in developing countries where environmental regulations are less strict and agriculture plays a more dominant role in the economy, the effects reported here may have a vast detrimental impact on a country's prosperity.

About Columbia University's Mailman School of Public Health

Founded in 1922 as one of the first three public health academies in the nation, Columbia University's Mailman School of Public Health pursues an agenda of research, education, and service to address the critical and complex public health issues affecting New Yorkers, the nation and the world. The Mailman School is the third largest recipient of NIH grants among schools of public health. Its over 450 multi-disciplinary faculty members work in more than 100 countries around the world, addressing such issues as preventing infectious and chronic diseases, environmental health, maternal and child health, health policy, climate change & health, and public health preparedness. It is a leader in public health education with over 1,300 graduate students from more than 40 nations pursuing a variety of master's and doctoral degree programs. The Mailman School is also home to numerous world-renowned research centers including the International Center for AIDS Care and Treatment Programs (ICAP), the National Center for Disaster Preparedness, and the Center for Infection and Immunity. For more information, please visit www.mailman.columbia.edu

Stephanie Berger | EurekAlert!
Further information:
http://www.columbia.edu

Further reports about: chronic disease health services ozone ozone standard public health

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>