Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overweight older women have less leg strength, power

21.09.2011
A new study from the University of New Hampshire finds that the leg strength and power of overweight older women is significantly less than that of normal-weight older women, increasing their risk for disability and loss of independence.

With more Americans aging and becoming overweight or obese, the study, published recently in the Journal of Electromyography and Kinesiology, dispels the popular image of the bird-thin elder being at greatest risk of becoming disabled due to loss of muscle mass.

"That's the chorus that's been sung for the last 20 years," says lead author Dain LaRoche, assistant professor of kinesiology at UNH. "But with two-thirds of Americans overweight or obese and the elderly population expected to double by year 2030, we are going to see a large portion of people who are disabled due to the concurrent gaining of weight and loss of strength."

Working with two undergraduate students, Rachel Kralian and Erica Millet (both class of 2010), LaRoche sought to measure the impact of excess weight on subjects' leg strength, walking speed, and power, the factors that affect activities of daily living like rising from a chair or climbing stairs. They found very little difference in the absolute strength of the overweight and normal-weight participants, but when their strength-to-weight ratio was calculated, the overweight women had an average of 24 percent lower strength than the normal-weight study participants.

"The deficits were even worse when you looked at power," says LaRoche, adding that power – the rate at which strength is applied – is more closely related to physical functions and fall risk than strength. The overweight women demonstrated 38 percent less power than the normal weight women. Walking speed was significantly slower – about 20 percent – for the overweight participants, as well.

"Everything pointed to the fact that it was the extra fat that these people were carrying that was really limiting their mobility," he says. "Being of a normal body weight lets you perform activities of daily living and live on your own longer."

Based on these findings, LaRoche suggests that normal-weight adults should work to maintain their weight and strength as they age. Older adults who are overweight can improve their strength-to-weight ratio by either losing weight or gaining strength. Perhaps surprisingly, data suggest the latter is the easier route. While most people are not successful at losing weight, "even the oldest old people can have dramatic increases in strength," says LaRoche, citing an earlier study he did (read about it here: http://www.unh.edu/news/cj_nr/2008/oct/bp23strength.cfm). The key to building strength is to fatigue the muscle with eight to fifteen repetitions, an aspect many new to weight training overlook.

LaRoche has been researching effects of strength and exercise on elderly populations for several years, but this is his first foray into the effects of obesity on this population. "I never intended to study overweight and obese elders, but it became obvious to me that being overweight is a growing and problematic concern," he says.

A summary of the study, called "Fat mass limits lower-extremity relative strength and maximal walking performance in older women," is available here: http://www.ncbi.nlm.nih.gov/pubmed/21824789. LaRoche was supported by the National Institute on Aging.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Photograph available to download: http://www.unh.edu/news/cj_nr/2011/sep/bp15walking.jpg
Caption: University of New Hampshire researchers test research subject Martha Thyng for walking speed, power and strength.

Credit: Courtesy of Dain LaRoche. Photo used with permission.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>