Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our ability to identify the source of pain varies across the body

06.06.2014

A new UCL study defines for the first time how our ability to identify where it hurts, called 'spatial acuity,' varies across the body, being most sensitive at the forehead and fingertips

"Where does it hurt?" is the first question asked to any person in pain.

Pain Experiment

Researchers from University College London use lasers to stimulate pain in a volunteer's hand. Sometimes only one laser would be activated, and sometimes both would be, unknown to participants. They were asked whether they felt one 'sting' or two, at varying distances between the two beams. The researchers recorded the minimum distance between the beams at which people were able to accurately say whether it was one sting or two. The ability to accurately discriminate the source of pain is known as 'spatial acuity' for pain.

Credit: UCL (University College London)

A new UCL study defines for the first time how our ability to identify where it hurts, called "spatial acuity", varies across the body, being most sensitive at the forehead and fingertips.

Using lasers to cause pain to 26 healthy volunteers without any touch, the researchers produced the first systematic map of how acuity for pain is distributed across the body. The work is published in the journal Annals of Neurology and was funded by the Wellcome Trust.

With the exception of the hairless skin on the hands, spatial acuity improves towards the centre of the body whereas the acuity for touch is best at the extremities. This spatial pattern was highly consistent across all participants.

The experiment was also conducted on a rare patient lacking a sense of touch, but who normally feels pain. The results for this patient were consistent with those for healthy volunteers, proving that acuity for pain does not require a functioning sense of touch.

"Acuity for touch has been known for more than a century, and tested daily in neurology to assess the state of sensory nerves on the body. It is striking that until now nobody had done the same for pain," says lead author Dr Flavia Mancini of the UCL Institute of Cognitive Neuroscience. "If you try to test pain with a physical object like a needle, you are also stimulating touch. This clouds the results, like taking an eye test wearing sunglasses. Using a specially-calibrated laser, we stimulate only the pain nerves in the upper layer of skin and not the deeper cells that sense touch."

Volunteers were blindfolded and had specially-calibrated pairs of lasers targeted at various parts of their body. These lasers cause a brief sensation of pinprick pain. Sometimes only one laser would be activated, and sometimes both would be, unknown to participants. They were asked whether they felt one 'sting' or two, at varying distances between the two beams. The researchers recorded the minimum distance between the beams at which people were able to accurately say whether it was one sting or two.

"This measure tells us how precisely people can locate the source of pain on different parts of their body," explains senior author Dr Giandomenico Iannetti of the UCL Department of Neuroscience, Physiology and Pharmacology.

"Touch and pain are mediated by different sensory systems. While tactile acuity has been well studied, pain acuity has been largely ignored, beyond the common textbook assertion that pain has lower acuity than touch. We found the opposite: acuity for touch and pain are actually very similar. The main difference is in their gradients across the body. For example, pain acuity across the arm is much higher at the shoulder than at the wrist, whereas the opposite is true for touch."

Acuity for both touch and pain normally correlates with the density of the relevant nerve fibres in each part of the body. However, the fingertips remain highly sensitive despite having a low density of pain-sensing nerve cells.

"The high pain acuity of the fingertips is something of a mystery that requires further investigation," says Dr Mancini. "This may be because people regularly use their fingertips, and so the central nervous system may learn to process the information accurately."

The findings have important implications for the assessment of both acute and chronic pain. Dr Roman Cregg of the UCL Centre for Anaesthesia, who was not involved in the research, is a clinical expert who treats patients with chronic pain.

"Chronic pain affects around 10 million people in the UK each year according to the British Pain Society, but we still have no reliable, reproducible way to test patients' pain acuity," says Dr Cregg. "This method offers an exciting, non-invasive way to test the state of pain networks across the body. Chronic pain is often caused by damaged nerves, but this is incredibly difficult to monitor and to treat. The laser method may enable us to monitor nerve damage across the body, offering a quantitative way to see if a condition is getting better or worse. I am excited at the prospect of taking this into the clinic, and now hope to work with Drs Mancini and Iannetti to translate their study to the chronic pain setting."

Harry Dayantis | Eurek Alert!
Further information:
http://www.ucl.ac.uk

Further reports about: Neuroscience UCL ability fingertips healthy highly identify lasers nerves pain sense sensory spatial

More articles from Studies and Analyses:

nachricht New study: How stable is the West Antarctic Ice Sheet?
09.02.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Online shopping might not be as green as we thought
08.02.2016 | University of Delaware

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>