Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our ability to identify the source of pain varies across the body

06.06.2014

A new UCL study defines for the first time how our ability to identify where it hurts, called 'spatial acuity,' varies across the body, being most sensitive at the forehead and fingertips

"Where does it hurt?" is the first question asked to any person in pain.

Pain Experiment

Researchers from University College London use lasers to stimulate pain in a volunteer's hand. Sometimes only one laser would be activated, and sometimes both would be, unknown to participants. They were asked whether they felt one 'sting' or two, at varying distances between the two beams. The researchers recorded the minimum distance between the beams at which people were able to accurately say whether it was one sting or two. The ability to accurately discriminate the source of pain is known as 'spatial acuity' for pain.

Credit: UCL (University College London)

A new UCL study defines for the first time how our ability to identify where it hurts, called "spatial acuity", varies across the body, being most sensitive at the forehead and fingertips.

Using lasers to cause pain to 26 healthy volunteers without any touch, the researchers produced the first systematic map of how acuity for pain is distributed across the body. The work is published in the journal Annals of Neurology and was funded by the Wellcome Trust.

With the exception of the hairless skin on the hands, spatial acuity improves towards the centre of the body whereas the acuity for touch is best at the extremities. This spatial pattern was highly consistent across all participants.

The experiment was also conducted on a rare patient lacking a sense of touch, but who normally feels pain. The results for this patient were consistent with those for healthy volunteers, proving that acuity for pain does not require a functioning sense of touch.

"Acuity for touch has been known for more than a century, and tested daily in neurology to assess the state of sensory nerves on the body. It is striking that until now nobody had done the same for pain," says lead author Dr Flavia Mancini of the UCL Institute of Cognitive Neuroscience. "If you try to test pain with a physical object like a needle, you are also stimulating touch. This clouds the results, like taking an eye test wearing sunglasses. Using a specially-calibrated laser, we stimulate only the pain nerves in the upper layer of skin and not the deeper cells that sense touch."

Volunteers were blindfolded and had specially-calibrated pairs of lasers targeted at various parts of their body. These lasers cause a brief sensation of pinprick pain. Sometimes only one laser would be activated, and sometimes both would be, unknown to participants. They were asked whether they felt one 'sting' or two, at varying distances between the two beams. The researchers recorded the minimum distance between the beams at which people were able to accurately say whether it was one sting or two.

"This measure tells us how precisely people can locate the source of pain on different parts of their body," explains senior author Dr Giandomenico Iannetti of the UCL Department of Neuroscience, Physiology and Pharmacology.

"Touch and pain are mediated by different sensory systems. While tactile acuity has been well studied, pain acuity has been largely ignored, beyond the common textbook assertion that pain has lower acuity than touch. We found the opposite: acuity for touch and pain are actually very similar. The main difference is in their gradients across the body. For example, pain acuity across the arm is much higher at the shoulder than at the wrist, whereas the opposite is true for touch."

Acuity for both touch and pain normally correlates with the density of the relevant nerve fibres in each part of the body. However, the fingertips remain highly sensitive despite having a low density of pain-sensing nerve cells.

"The high pain acuity of the fingertips is something of a mystery that requires further investigation," says Dr Mancini. "This may be because people regularly use their fingertips, and so the central nervous system may learn to process the information accurately."

The findings have important implications for the assessment of both acute and chronic pain. Dr Roman Cregg of the UCL Centre for Anaesthesia, who was not involved in the research, is a clinical expert who treats patients with chronic pain.

"Chronic pain affects around 10 million people in the UK each year according to the British Pain Society, but we still have no reliable, reproducible way to test patients' pain acuity," says Dr Cregg. "This method offers an exciting, non-invasive way to test the state of pain networks across the body. Chronic pain is often caused by damaged nerves, but this is incredibly difficult to monitor and to treat. The laser method may enable us to monitor nerve damage across the body, offering a quantitative way to see if a condition is getting better or worse. I am excited at the prospect of taking this into the clinic, and now hope to work with Drs Mancini and Iannetti to translate their study to the chronic pain setting."

Harry Dayantis | Eurek Alert!
Further information:
http://www.ucl.ac.uk

Further reports about: Neuroscience UCL ability fingertips healthy highly identify lasers nerves pain sense sensory spatial

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>