Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OU Cancer Study Takes Major Step Toward Improved Treatment

03.12.2009
OU's non-toxic drug makes cancer cells respond to newest therapy

Cancer researchers at the University of Oklahoma Health Sciences Center have found a way to turn ineffective new cancer drugs into cancer-fighters. By using their patented chemical compound, SHetA2, researchers tricked cancer cells into responding to new treatments and undergoing cell suicide. The research appears in the journal Gynecologic Oncology.

“This discovery means that we can use our non-toxic cancer prevention pill to improve treatment for people who already have cancer,” said Doris Mangiaracina Benbrook, Ph.D., principal investigator on the project. “All studies to date have not found any side effects of taking our drug, giving hope that we can prevent cancer in healthy people, and improve treatment for cancer patients, without increasing toxicity.”

The latest study looked at an upcoming class of cancer treatment drugs that worked well in experimental models, but proved ineffective against many human tumors. Dr. Benbrook and her team decided to test their compound’s ability to “fix” the problem. It worked.

“The new chemotherapy drugs are antibodies that bind to cell surface receptors called ‘Death Receptors.’ The binding of the antibodies activates the death receptors in cancer cells and causes cell suicide with little harm to normal cells. Many cancers, however, are resistant to the antibodies,” Benbrook said. “We’ve shown that SHetA2 treatment can make ovarian and kidney cancer cells sensitive to the death receptor antibodies and kill the cancer.”

Benbrook said the compound will work with several cancers, including lung, kidney, ovarian, colon and pancreatic cancer.

“It would be a significant advancement in health care if we could avoid the severe toxicity and suffering that late stage cancer patients have to experience,” Benbrook said.

The synthetic compound, SHetA2, a Flex-Het drug, was created by Benbrook with the help of chemist Darrell Berlin at Oklahoma State University. The compound directly targets abnormalities in cancer cell components without damaging normal cells. The disruption causes cancer cells to die and keeps tumors from forming.

Flex-Hets or flexible heteroarotinoids are synthetic compounds that can change certain parts of a cell and affect its growth. Benbrook and her research team have patented the SHetA2 Flex-Het and hope to start clinical trials for the compound within a year. If the compound continues to be found safe, it would be developed into a pill to be taken daily like a multi-vitamin to prevent cancer. This new discovery means that the pill also could be used to make patients, who already have cancer, better respond to treatment.

Diane Clay | EurekAlert!
Further information:
http://www.ouhsc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>